Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (12): 921-932    DOI: 10.11901/1005.3093.2020.182
ARTICLES Current Issue | Archive | Adv Search |
Photocatalytic Degradation and Reduction Properties of AuAg/Bi2O3 Composite
SUN Xiaofeng, XIAN Tao(), DI Lijing, ZHOU Yongjie, LI Hongqin
College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China
Cite this article: 

SUN Xiaofeng, XIAN Tao, DI Lijing, ZHOU Yongjie, LI Hongqin. Photocatalytic Degradation and Reduction Properties of AuAg/Bi2O3 Composite. Chinese Journal of Materials Research, 2020, 34(12): 921-932.

Download:  HTML  PDF(17087KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bi2O3 particles were fabricated by polyacrylamide gel method, after that the as-prepared Bi2O3 particles were decorated by the AuAg alloy nanoparticles (6~18 nm) to obtain AuAg/Bi2O3 composite. The composite exhibits obvious light absorbance centered around ~577 nm owing to the surface plasmon resonance (SPR) effect of AuAg alloy, which extends the light response range of Bi2O3. More importantly, the separation of photogenerated charges in bare Bi2O3 can be improved by the decoration of AuAg alloy nanoparticles. The rhodamine B (RhB), methyl orange (MO) and Cr(VI) are employed as target reactant to evaluate the photocatalytic degradation and reduction activity of AuAg/Bi2O3 composite under simulated sunlight and visible light irradiation. Results indicate that the composite exhibits obviously enhanced photocatalytic activity compared with the bare Bi2O3. After simulated sunlight irradiation for 2 h the degradation percentage of RhB and MO as well as reduction percentage of Cr(VI) increase by ~34.2%, ~38.0% and ~56.7%, respectively. Furthermore, it is worth noting that the AuAg/Bi2O3 composite has excellent photocatalytic and structure stability. According to above experimental results a possible photocatalytic mechanism of AuAg/Bi2O3 composite was proposed.

Key words:  composite      AuAg alloy      Bi2O3      photocatalysis      modification     
Received:  22 May 2020     
ZTFLH:  TB383  
Fund: National Natural Science Foundation of China(51602170);Natural Science Foundation of Qinghai(2020-ZJ-936Q);Youth Science Foundation of Qinghai Normal University(2019zr003)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.182     OR     https://www.cjmr.org/EN/Y2020/V34/I12/921

Fig.1  Schematic illustration of the preparation process of the Bi2O3
Fig.2  Schematic illustration of the decoration of AuAg alloy on the Bi2O3
Fig.3  XRD patterns (a) and enlarged XRD patterns (b) of Bi2O3 and AuAg/Bi2O3 composite
Fig.4  Morphology and microstructure images of Bi2O3 and AuAg/Bi2O3 composite (a) TEM and (b) SEM image of Bi2O3, (c) HRTEM image of Bi2O3, (d) and (e) TEM image of AuAg/Bi2O3, (f) HRTEM image of AuAg/Bi2O3
Fig.5  EDX spectrum (a) and elemental mapping images of AuAg/Bi2O3 composite (b) Bi, (c) O, (d) Au, (e) Ag
Fig.6  High-resolution X-ray photoelectron spectroscopy of elements in AuAg/Bi2O3 composite (a) Bi4f, (b) O1s, (c) Au4f, (d) Ag3d
Fig.7  UV-vis diffuse reflectance spectra of Bi2O3 and AuAg/Bi2O3 composite (a), their corresponding first derivative (b) of the diffuse reflectance spectra
Fig.8  Photocurrent response plots (a), electrochemical impedance spectra (b) and photoluminescence spectra (c) of Bi2O3 and AuAg/Bi2O3 composite
Fig.9  photocatalytic degradation of MO and RhB over Bi2O3 and AuAg/Bi2O3 under simulated sunlight and visible light irradiation, respectively (a, b), UV-vis absorption spectra of MO and RhB degraded by AuAg/Bi2O3 (c, d) under simulated sunlight irradiation
Fig.10  Photocatalytic reduction of Cr(VI) over Bi2O3 and AuAg/Bi2O3 under simulated sunlight and visible light irradiation(a), Absorption spectra of Cr(VI) reduced by AuAg/Bi2O3 (b) under simulated sunlight irradiation
Fig.11  photocatalytic degradation of MO and RhB (a, b), photocatalytic reduction of Cr(VI) over Ag/Bi2O3, Au/Bi2O3 and AuAg/Bi2O3 (c) under simulated sunlight and visible light irradiation
Fig.12  Recyclability of AuAg/Bi2O3 composite for photocatalytic degradation of MO and RhB, photocatalytic reduction of Cr(VI) (a), XRD patterns (b), and TEM images of AuAg/Bi2O3 composite before and after the cycling runs of RhB degradation (c, d)
Fig.13  Mott-Schottky plot of the Bi2O3 (a) and possi-ble photocatalytic mechanism of AuAg/Bi2O3 composite (b)
1 Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
谢亮, 王平, 李之锋等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
2 Liao Z H, Chen J J, Yao K F, et al. Preparation and characterization of nanometer-sized magnetic photocatalyst TiO2/SiO2/Fe3O4 [J]. Int. J. Inorg. Mater., 2004, (04): 749
廖振华, 陈建军, 姚可夫等. 磁性纳米TiO2/SiO2/Fe3O4光催化剂的制备及表征 [J]. 无机材料学报, 2004, (04): 749
3 Qin Y, Yang Y, Zhao P, et al. Microstructures and photocatalytic properties of BiOCl-RGO nanocomposites prepared by two-step hydrothermal method [J]. Chin. J. Mater. Res., 2020, 34(2): 92
秦艳利, 杨艳, 赵鹏羽等. 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 [J]. 材料研究学报, 2020, 34(2): 92
4 Jalalah M, Faisal M, Bouzid H, et al. Comparative study on photocatalytic performances of crystalline α-and β-Bi2O3 nanoparticles under visible light [J]. J. Ind. and Eng. Chem., 2015, 30: 183
5 Luo X, Zhu G, Peng J, et al. Enhanced photocatalytic activity of Gd-doped porous β-Bi2O3 photocatalysts under visible light irradiation [J]. Appl. Surf. Sci., 2015, 351: 260
6 Gao X M, Shuang Y Y, Liu L B, et al. Zn doping 2D layered δ-Bi2O3 nanosheets for photocatalytic nitrogen fixation [J]. Int. J. Inorg. Mater., 2019, 34(09): 967
高晓明, 尚艳岩, 刘利波等. Zn掺杂二维层状δ-Bi2O3纳米片的光催化固氮性能研究 [J]. 无机材料学报, 2019, 34(09): 967
7 Hameed A, Montini T, Gombac V, et al. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite [J]. J. Am. Chem. Soc., 2008, 130(30): 9658
8 Thirumurthy K, Thirunarayanan G. A facile designed highly moderate craspedia flowerlike sulphated Bi2O3-fly ash catalyst: Green synthetic strategy for (6H-pyrido [3, 2-b] carbazol-4-yl) aniline derivatives in water [J]. Asian. J. Chem., 2018, 11(4): 443
9 Hua C H, Ma H C, Dong X L, et al. Synthesis and photocatalytic activity of α-Bi2O3 nanotubes/nitrogen doped carbon quantum dots hybrid material [J]. Chem. J Chinese U, 2018, 39(02): 200
华承贺, 马红超, 董晓丽等. α-Bi2O3纳米管/氮掺杂碳量子点复合材料的合成及光催化性能 [J]. 高等学校化学学报, 2018, 39(02): 200
10 Zhong X, Dai Z, Qin F, et al. Ag-decorated Bi2O3 nanospheres with enhanced visible-light-driven photocatalytic activities for water treatment [J]. RSC Adv., 2015, 5(85): 69312
11 Huang Y, Qin J, Liu X, et al. Hydrothermal synthesis of flower-like Na-doped a-Bi2O3 and improved photocatalytic activity via the induced oxygen vacancies [J]. J Taiwan Inst. Chem. E, 2019, 96: 353
12 Wang Q, Liu E, Zhang C, et al. Synthesis of Cs3PMo12O4/Bi2O3 composite with highly enhanced photocatalytic activity under visible-light irradiation [J]. J. Colloid. Interface. Sci., 2018, 516: 304
13 Xian T, Sun X, Di L, et al. Carbon quantum dots (CQDs) decorated Bi2O3-x hybrid photocatalysts with promising NIR-light-driven photodegradation activity for AO7 [J]. Catalysts, 2019, 9(12): 1031
14 Pan X, Xu Y J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light [J]. J. Phys. Chem. C., 2013, 117(35): 17996
15 Xian T, Di L, Sun X, et al. Photocatalytic degradation of dyes over Au decorated SrTiO3 nanoparticles under simulated sunlight and visible light irradiation [J]. J. Ceram. Soc. Jpn., 2018, 126(5): 354
16 Zheng Y, Zheng L, Zhan Y, et al. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis [J]. Inorg. Chem, 2007, 46(17): 6980
17 Chen Z, Liang X, Fan X, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(7): 515
陈子尚, 梁小平, 樊小伟等. Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(7): 515
18 Rayalu S S, Jose D, Joshi M V, et al. Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: enhancement in photocatalytic activity due to SPR effect [J]. Appl. Catal., B: Environ., 2013, 142: 684
19 Xian T, Di L J, Ma J, et al. Photocatalytic degradation activity of BaTiO3 nanoparticles modified with Au in simulated sunlight [J]. Chin. J. Mater. Res., 2017, 31(2): 102
县涛, 邸丽景, 马俊等. Au改性BaTiO3纳米颗粒在模拟太阳光照射下的光催化降解性能 [J]. 材料研究学报, 2017, 31(2): 102
20 Cui Z K, Mi L W, Fa W J, et al. Preparation and photocatalytic performance of Pt/BiOCl nanostructures [J]. Chin. J. Mater. Res., 2013, 27(6): 583
崔占奎, 米立伟, 法文君等. Pt/BiOCl纳米结构的制备及其光催化性能 [J]. 材料研究学报, 2013, 27(6): 583
21 Tang L, Feng C, Deng Y, et al. Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: the high potential band protection mechanism [J]. Appl. Catal., B: Environ., 2018, 230: 102
22 Wang F, Yang H, Zhang H, et al. Growth process and enhanced photocatalytic performance of CuBi2O4 hierarchical microcuboids decorated with AuAg alloy nanoparticles [J]. J. Mater. Sci. Mater. Electron, 2018, 29(2): 1304
23 Ma Y, Kobayashi K, Cao Y, et al. Development of visible-light-responsive morphology-controlled brookite TiO2 nanorods by site-selective loading of AuAg bimetallic nanoparticles [J]. Appl. Catal., B: Environ., 2019, 245: 681
24 Sun L, Yin Y, Lv P, et al. Green controllable synthesis of Au-Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity [J]. RSC adv., 2018, 8(8): 3964
25 Sanabria-Arenas B E, Mazare A, Yoo J, et al. Intrinsic AuPt-alloy particles decorated on TiO2 nanotubes provide enhanced photocatalytic degradation [J]. Electrochim. Acta., 2018, 292: 865
26 Zeng D, Yang L, Zhou P, et al. AuCu alloys deposited on titanium dioxide nanosheets for efficient photocatalytic hydrogen evolution [J]. Int. J. Hydrogen Energy, 2018, 43(32): 15155
27 Zhang Y, Park S J. Au-Pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene [J]. J. Catal., 2017, 355: 1
28 Pugazhenthiran N, Sathishkumar P, Murugesan S, et al. Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles [J]. Chem. Eng. J., 2011, 168(3): 1227
29 Gao X, Shang Y, Liu L, et al. Multilayer ultrathin Ag-δ-Bi2O3 with ultrafast charge transformation for enhanced photocatalytic nitrogen fixation [J]. J. Colloid Interface Sci., 2019, 533: 649
30 Yang K, Li J, Peng Y, et al. Enhanced visible light photocatalysis over Pt-loaded Bi2O3: an insight into its photogenerated charge separation, transfer and capture [J]. Phys. Chem. Chem. Phys., 2017, 19(1): 251
31 Hu H, Xiao C, Lin X, et al. Controllable fabrication of heterostructured Au/Bi2O3 with plasmon effect for efficient photodegradation of rhodamine 6G [J]. J Exp. Nanosci, 2017, 12(1): 33
32 Xian T, Di L, Sun X, et al. Photo-fenton degradation of AO7 and photocatalytic reduction of Cr (VI) over CQD-decorated BiFeO3 nanoparticles under visible and NIR light irradiation [J]. Nanoscale. Res. Lett, 2019, 14(1): 1
33 Ge M, Cao C, Li S, et al. Enhanced photocatalytic performances of n-TiO2 nanotubes by uniform creation of p-n heterojunctions with p-Bi2O3 quantum dots [J]. Nanoscale, 2015, 7(27): 11552
34 Sahoo M, Mansingh S, Parida K M. A bimetallic Au-Ag nanoalloy mounted LDH/RGO nanocomposite: a promising catalyst effective towards a coupled system for the photoredox reactions converting benzyl alcohol to benzaldehyde and nitrobenzene to aniline under visible light [J]. J. Med. Chem., 2019, 7(13): 7614
35 Sobana N, Muruganadham M, Swaminathan M. Nano-Ag particles doped TiO2 for efficientphotodegradation of Direct azo dyes [J]. J. Mol. Catal. A: Chem., 2006, 258: 124
36 Liu G, Li S, Lu Y, et al. Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity byα-Bi2O3γ-Bi2O3α-Bi2O3 transformation in a facile precipitation method [J]. J. Alloys Compd., 2016, 689: 787
37 Gelderman K, Lee L, Donne S W. Flat-band potential of a semiconductor: using the Mott-Schottky equation [J]. J. Chem. Educ., 2007, 84(4): 685
38 Wei N, Cui H, Wang C, et al. Bi2O3 nanoparticles incorporated porous TiO2 films as an effective p‐n junction with enhanced photocatalytic activity [J]. J. Am. Chem. Soc., 2017, 100(4): 1339
39 Hou W B, Hung W H, Pavaskar P, et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions [J]. ACS Catal., 2011, 1(8): 929
40 Xian T, Yang H, Di L J, et al. Enhanced photocatalytic activity of BaTiO3@g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation [J]. J. Alloys Compd., 2015, 622: 1098
41 Ringe E, McMahon J M, Sohn K, et al. Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach [J]. J. Phys. Chem. C, 2010, 114(29): 12511
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] LI Linlong, YANG Liqi, XUE Weihai, GAO Siyang, WANG Xu, DUAN Deli, LI Shu. Sliding Friction and Wear between Rare Earth Modified GCR15 Steel against Cage Materials[J]. 材料研究学报, 2023, 37(6): 408-416.
[9] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[11] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[12] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[13] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
No Suggested Reading articles found!