Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (12): 933-938    DOI: 10.11901/1005.3093.2020.153
ARTICLES Current Issue | Archive | Adv Search |
Combustion Characteristics of Carbon Fiber/Epoxy Laminates at Low Heat Flux
CHEN Shaojie1,2, XU Yanying1,2(), WANG Zhi1,2, HU Po1,2
1.School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China
2.Liaoning Key Laboratory of Aircraft Safety and Airworthiness, Shenyang Aerospace University, Shenyang 110136, China
Cite this article: 

CHEN Shaojie, XU Yanying, WANG Zhi, HU Po. Combustion Characteristics of Carbon Fiber/Epoxy Laminates at Low Heat Flux. Chinese Journal of Materials Research, 2020, 34(12): 933-938.

Download:  HTML  PDF(1703KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The combustion characteristics of carbon fiber/epoxy laminates were investigated by means of cone calorimeter at 35 kW/m2 heat flux in terms of ignition time, mass loss rate, heat release rate etc. The mathematical model of thermal penetration depth was established in order to acquire the relation of thermal penetration depth of materials with their thickness, which was a reference to differentiate the carbon designed fiber/epoxy laminate either as ‘thermally thin’ or ‘thermally thick’-type, and analyze the combustion process of laminates. The results show that with the increase of thickness of carbon fiber/epoxy resin laminate the ignition time increases, the average mass loss rate and the mass loss rate peak decrease, the total heat release increases, and the peak heat release rate increases first and then decreases. It follows that the carbon fiber/epoxy resin laminates present burning behavior as either ‘thermally thin’ or ‘thermally thick’-type may be depend upon its own physical thickness when it is ignited, and ‘thermally thick’ material has a changing thermal response process from ‘thermally thick’ to ‘thermally thin’-type during the combustion process.

Key words:  composites      carbon fiber/epoxy laminates      cone calorimeter      combustion characteristics      heat penetration depth     
Received:  07 May 2020     
ZTFLH:  V258  
Fund: Liaoning Provincial Department of Education Science and Technology Project(JYT19065);Natural Science Foundation of Liaoning Province(20180540033)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.153     OR     https://www.cjmr.org/EN/Y2020/V34/I12/933

Sample numberNumber of laminasSize (Length×Width)/mm

Thickness

/mm

Mass/g
1[0°/90°]4100×1001.2217.00
2[0°/90°]8100×1002.4531.57
3[0°/90°]12100×1003.9049.77
4[0°/90°]16100×1004.5561.78
5[0°/90°]20100×1005.6676.01
6[0°/90°]24100×1006.8090.65
7[0°/90°]32100×1008.75119.00
Table 1  Specification parameters of experimental samples of carbon fiber/epoxy laminates
Fig.1  Relationship between ignition time and thickness of carbon fiber/epoxy laminates
ParameterSymbolREF
Thermal conductivity (297 K)λ0.6 W/m·K
Densityρ1350 kg/m3
Specific heatc1000 J/kg·K
Table 2  Thermal properties of carbon fiber/epoxy resin composites
Sample number

Thickness

/mm

Heat penetration depth/mmThermally thin or thermally thick
11.221.509Thermally thin
22.452.093Thermally thick
33.902.547
44.552.796
55.662.968
66.803.191
78.753.536
Table 3  Calculation results of heat penetration depth
Fig.2  relationship between residual mass ratio of different experimental samples and time
Fig.3  Mass loss rate curve of carbon fiber/epoxy laminates with different thickness

Thickness

/mm

pkMLR/g·s-1

aMLR

/g·s-1

First peak

Time

/s

Second peak

Time

/s

1.220.235385--0.1227
2.450.21491160.18681510.1187
3.900.15091640.19182290.1158
4.550.14372050.18282710.0974
5.660.16462240.17163850.0908
6.800.12832580.13174300.0840
8.750.11243200.11016010.0744
Table 4  Characteristic value of mass loss rate
Fig.4  Curve of heat release rate

Thickness

/mm

pkHRR

/kW·m-2

Time to pkHRR

/s

HRR tig to 180 s

/kW·m-2

HRR tig to 360 s

/kW·m-2

THR

/MJ·m-2

1.22250.57123141.0687.9434.47
2.45347.83201206.44144.2756.26
3.9444.64304253.49221.789.54
4.55428.46345242.17247.65105.93
5.66386.07436159.84239.94114.43
6.8350.93515153.49234.43121.43
8.75306.23740148.71196.9167.82
Table 5  Characteristic value of heat release rate and to tal heat release
1 Sui G, Zhang Z G, Chen C L, et al. Effect of Heat Treatment on Epoxy Resins Cured by Electron Beam Radiation [J]. Chinese Journal of Materials Research, 2002, 16(6): 657
隋刚, 张佐光, 陈昌麒等. 热处理对电子束辐射固化环氧树脂的作用效果 [J]. 材料研究学报, 2002, 16(6): 657
2 Mouritz A.P, Gibson A.G. Fire properties of polymer composite materials[M]. Dordrecht: Springer, 2006
3 Xu Y Y, Yang Y, Shen R Q, et al. Thermal behavior and kinetics study of carbon/epoxy resin composites [J]. Polymer Composites, 2019, 40(12): 4530
4 Xu Y Y, Lv C, Shen R Q, Wang Z, et al. Experimental investigation of thermal properties and fire behavior of carbon/epoxy laminate and its foam core sandwich composite [J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(3): 1237
5 He M B, Ma Z L, Liu W P, et al. Research on Pyrolysis of Carbon-Fiber Reinforced Epoxy Resin Composite Irradiated by CW Laser [J]. Modern Applied Physics, 2016, 7(01): 48
贺敏波, 马志亮, 刘卫平等. 连续激光辐照下碳纤维环氧树脂复合材料热解问题研究 [J]. 现代应用物理, 2016, 7(01): 48
6 Dong K. Experimental Characterization and Multi-scale Finite Element Analysis of Thermal Conduction and Thermal Expansion Properties of Textile Structural Composites [D]. Donghua University, 2018
董凯. 纺织结构复合材料热传导和热膨胀性质实验表征和多尺度有限元分析 [D]. 东华大学, 2018
7 Scudamore M.J.. Fire performance studies on glass-reinforced plastic laminates [J]. Fire and Materials, 1994, 18: 313
8 Lv C, Xu Y Y, Chen J, et al. The Combustion Characteristics of Carbon/Epoxy Composite Materials in Different Lamina [J]. Fire Sci Technol, 2018, 37(02): 164
吕超, 徐艳英, 陈健等. 不同铺层方式碳纤维/环氧复合材料的燃烧特性 [J]. 消防科学与技术, 2018, 37(02): 164
9 Babrauskas V. Ignition handbook: principles and applications to fire safety engineering, fire investigation, risk management and forensic science [M]. Fire Science Publishers. 2003
10 Mikkola E, Wichman I S. 1989. On the thermal ignition of combustible materials [J]. Fire and Materials, 14(3): 87
11 Zhang K J. The One of Thermal Physical Properties of Carbon Fiber/Epoxy-Resin Composites——Thermal Conductivity [J]. Chin Space Sci Technol, 1987, (03): 55
张建可. 树脂基碳纤维复合材料的热物理性能之一——导热系数 [J]. 中国空间科学技术, 1987, (03): 55
12 Yang J, Zhang H P, Zhang J, et al. Experimental Study on Plywood Burning Behaviors in Cone Calorimeter Test [J]. Journal of Combustion Science and Technology, 2006, (02): 159
杨昀, 张和平, 张军等. 用锥形量热仪研究胶合板的燃烧特性 [J]. 燃烧科学与技术, 2006, (02): 159
13 Guo Z D. Experimental Study on the Combustion Characteristics of the Solid Fuel For the Typical Business Kitchens [J]. J Saf Environ, 2016, 2016, (01): 133.
郭子东. 商业厨房典型固体可燃物燃烧性能试验 [J]. 安全与环境学报, 2016, 16(01): 133
14 Chen R Y, Lu S X, Li C H, et al. Correlation analysis of heat flux and cone calorimeter test data of commercial flame-retardant ethylene-propylene-diene monomer (EPDM) rubber [J]. Springer Netherlands, 2016, 123(1)
15 Karlsson B, Quintiere J. Enclosure fire dynamics[M]. New York, USA: CRC press. 1999
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!