Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (1): 1-15    DOI: 10.11901/1005.3093.2019.371
ARTICLES Current Issue | Archive | Adv Search |
Current Status and Development Trend on Weldability of Ultra-high Strength Hull Structure Steel
LEI Xuanwei1,2,ZHOU Shuanbao2,HUANG Jihua2()
1. Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

LEI Xuanwei,ZHOU Shuanbao,HUANG Jihua. Current Status and Development Trend on Weldability of Ultra-high Strength Hull Structure Steel. Chinese Journal of Materials Research, 2020, 34(1): 1-15.

Download:  HTML  PDF(3284KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Through studies and discussions on mechanical properties of ultra-high strength hull structural (UHSHS) steels and their weld joints, the problem concerning weldability of UHSHS steels was concluded as poor low temperature toughness in coarse-grained heat affected zone (CGHAZ) under large heat input welding procedure. The root causes of this problem were analyzed on two aspects: the formations of martensite-austenite (M-A) constituents and granular bainite. Current three approaches of oxide metallurgy technology application, Cu precipitation introduction and high Ni content design to improve the weldability of UHSHS steels were summarized. Under comprehensive analyses on the current status of UHSHS steels, it is considered that the design of ultra-low C and high Ni content can further improve the weldability of ultra-high strength hull structural steels.

Key words:  review      metalic materials      weldability      ultra-high strength hull structure steel      large heat input welding     
Received:  26 July 2019     
ZTFLH:  TG142.4  
Fund: National Basic Research Program of China(613280);National Natural Science Foundation of China(51904125)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.371     OR     https://www.cjmr.org/EN/Y2020/V34/I1/1

Strength

grade

Yield strength

/MPa

Tensile strength

/MPa

Impact toughness

AKV/J

420≥420530~680

≥42

≥46

460≥460570~720
500≥500610~770≥50
550≥550670~830≥55
620≥620720~890≥62
690≥690770~940≥69
Table 1  Required mechanical properties of UHSHS steel and its weld joint
SteelsGrade/MPaCSiMnAlNbVTiMoCrNiCu
F460[7]4600.0620.231.470.0400.0940.60
F500[8,9]5000.050.241.480.030.0110.260.28
0.060.361.570.040.0060.0380.020.200.220.530.24
F550[10,11]5500.070.261.100.0330.0360.0170.400.350.39
0.0670.171.510.0360.0260.0040.0120.300.310.700.71
E690[11]6900.080.151.580.0250.0950.0150.300.300.701.00
F690[12]6900.070.231.060.0360.0430.0040.0191.0~1.13.0~3.1
Table 2  Chemical composition of domestic civil UHSHS steels (mass fraction, %)
No.

Grade

/MPa

CSiMnNiMoCrVTi
945[13,14]4400.140.601.001.000.10.500.05
0.120.541.051.150.110.520.04
921[15]5900.110.270.482.720.231.020.060.026
0.10.20.412.660.251.030.060.016
921A[16,17]5900.070.290.432.650.260.06
0.10.240.462.780.241.110.07
980[18,19]785≤0.130.2~0.40.3~0.64.8~5.30.2~0.35
0.09~0.130.2~0.30.5~0.64.4~4.50.36~0.440.5~0.7
Table 3  chemical composition of domestic navy steels (mass fraction, %)
No.Grade/MPCSiMnNiMoCuCrAlV
HY80[20,21]5500.160.260.232.930.340.0111.430.030.005
0.120.200.292.420.410.081.490.01
HY85[22]5900.080.250.52.10.30.50.540.03
HY100[23,24]6900.170.220.32.350.250.131.32
0.160.210.262.660.410.151.470.02
HY130[25]8900.120.200.704.800.450.50
Table 4  Chemical composition of HY series navy steels (mass fraction, %)
No.Grade/MPCSiMnNiMoCuCrAlNbV
HSLA80[26,27]5500.0440.320.650.871.120.770.0130.077
0.050.341.001.770.5101.230.610.0250.0370.01
HSLA100[28,29]6900.060.250.843.470.581.540.740.0230.030.004
0.050.350.823.410.601.610.550.03
HSLA115[30]7850.050.220.973.370.561.290.640.020.020.01
HSLA130[31]8900.070.370.793.330.581.720.570.0230.005
Table 5  Chemical composition of HSLA series navy steels (mass fraction, %)
SteelsYield strength/MPaTensile strength/MPaCharpy absorbed energy/J
F460[35] (460 MPa grade)495 (≥460)599 (570~720)AKV–60℃ 335 (≥46)
F500[36] (500 MPa grade)580 (≥500)655 (610~770)AKV–60℃ 194 (≥50)
F550[11] (550 MPa grade)610 (≥550)660 (670~830)AKV–60℃ 212 (≥55)
E690[37] (690 MPa grade)730 (≥690)820 (770~940)AKV–40℃ 210 (≥69)
F690[38] (690 MPa grade)766 (≥690)804 (770~940)AKV–60℃ 230 (≥69)
921A[39] (590 MPa grade)630 (≥590)710 (685~845)AKV–60℃ 180 (≥59)
980[40] (785 MPa grade)939 (≥785)1002AKV–20℃ 149 (≥78.5)
HY80[25] (550 MPa grade)760 (≥550)813 (670~830)AKV–45℃ 250 (≥55)
HY85[41] (590 MPa grade)959 (685~845)AKV–50℃ 226 (≥59)
HY100[25] (690 MPa grade)689 (≥690)814 (770~940)
HY130[25] (890 MPa grade)896 (≥890)986
HSLA100[42] (690 MPa grade)833 (≥690)938 (770~940)AKV–50℃ 179 (≥69)
HSLA115[30] (785 MPa grade)972 (≥785)997AKV–84℃ 100 (≥78.5)
HSLA130[31] (890 MPa grade)896 (≥890)986
Table 6  Mechanical properties of several UHSHS steels (correspondence in CCS standard)
Fig.1  Total alloy content variation trend curve of domestic civil UHSHS steels
Fig.2  Ceq variation trend of domestic civil UHSHS steels Ceq=w(C)+w(Mn)/6+w(Cr+Mo+V)/5+w(Ni+Cu)/15
Steels

Heat input

/kJ·cm–1

Welding method

Tensile strength

/MPa

Fault location

CCS standard

/MPa

F460[45]364Electrogas arc welding584, 586Base metal≥570
F500[36]53Submerged arc welding580Base metal≥610
F550[11]50Submerged arc welding620~664Base metal≥670
E690[11]50Submerged arc welding796~822Base metal≥770
F690[38]35Submerged arc welding798, 809Base metal≥770
Table 7  Strengths of weld joints of UHSHS steels under large heat input
Steels

Heat input

/kJ·cm–1

Method

AGS of CGHAZ

/μm

fGB in CGHAZfM-A in CGHAZCVN/J
F460[35]50Thermal simulation~60~0.75–0.85AKV–60℃ 74
E550[46]~65Thermal simulation~45~0.80–0.90AKV–40℃ 16
F550[11]50Submerged arc welding~60~0.65–0.75~0.15–0.2055≤AKV–60℃ ≤67
E690[47]50Submerged arc welding~40~0.20–0.35~0.10–0.1540≤AKV–40℃≤47
F690[38,48]~35Thermal simulation~60AKV–60℃ 26
HY85[41]50Thermal simulation~82~0.40–0.50~0.05–0.10AKV–50℃ 27
HSLA80[49]40Submerged arc welding~0.10

AKV–50℃ 62

AKV–50℃ 44

HSLA115[50]33.5Submerged arc weldingAKV–51℃ ≤111
Table 8  Charpy V-notch (CVN) impact value in CGHAZs of UHSHS steels under large heat input
Steels

Heat input

/kJ·cm-1

Welding methodTensile strength/MPaFault location

CCS standard

/MPa

E690[11]15Submerged arc welding808,818Base metal≥770
E/F690[51]21.4Submerged arc welding825Base metal≥770
921A[52]20Arc welding702Base metal≥685
980[19]11Metal active gas welding930Base metal
HY80[53]21.7Submerged arc weldingYield strength 658Base metal≥550
HSLA100[54]25.6Gas metal arc welding869Base metal≥770
Table 9  Strengths of weld joints of UHSHS steels under conventional heat input
Steels

Heat input

/kJ·cm-1

MethodAGS of CGHAZ/μmfGB in CGHAZfM-A in CGHAZCVN/J
F460[35]30Thermal simulation~35~0.10–0.20AKV–60℃ 321
E550[46]~20Thermal simulation~35~0.30–0.40AKV–40℃ 128
F550[43]15Submerged arc welding107≤AKV–50℃ ≤252
E/F690[51]21.4Submerged arc welding~60–70~0.05–0.15~0.0585≤AKV–50℃ ≤115
HY85[41]15Thermal simulation~70~0.10–0.20~0.05–0.10AKV–50℃ 81
HSLA80[49]20Submerged arc welding

AKV–50℃ 107

AKV–50℃ 198

HSLA100[42]20Shield metal arc welding~75AKV–50℃ ~130
Table 10  CVN impact value in CGHAZs of UHSHS steels under conventional heat input
Steels

Heat input

/kJ·cm–1

Welding methodAGS of CGHAZ/μmfGB in CGHAZfM-A in CGHAZCVN/J
E690[47]50Submerged arc welding~25~0.10–0.20~0.05–0.1086≤AKV–40℃ ≤117
Table 11  CVN impact value of CGHAZs of UHSHS steels under large heat input with fast cooling process
Fig.3  CVN impact values in HAZ of UHSHS E690 steels under large heat input with fast cooling process
Fig.4  Impact toughness in CGHAZs of UHSHS steels (test temperature for F460 and F550 is -60℃, for HY85 is -50℃ and for E690 is -40℃) (a) with relatively large volume fractions of M-A and/or GB, (b) with relatively small volume fractions of M-A and/or GB
Fig.5  Schematic illustration of the effect of alloy content on (a) free energy and (b) phase transformation
Fig.6  Schematic illustration of the effect of cooling rate on (a) free energy and (b) phase transformation
AGS of CGHAZ/μmMicrostructure type
≥50~60A portion of AF or main LLB
≤40~50Main LLB
Table 12  Desired microstructure type in CGHAZ of UHSHS steels
Fig.7  Carbon gradients by granular bainite and upper bainite formations
Fig.8  Graville’s diagram showing weldability of steels for warships as a function of carbon content and carbon equivalent
Fig.9  Ni and Cu contents in various grades of ultra-high strength hull structural steels (a) domestic civil steels, (b) 9 series war ship steels, (c) HY series steels, (d) HSLA series steels
Fig.10  Phase evolution in CGHAZ of the newly developed 785 MPa UHSHS steel[83] (a) SH-CCT diagram, (b) corresponding phase fraction diagram
[1] Fu K, Ji Y, Wang J, et al. Research Progress on Hull Structural Steels by High Heat Input Welding [J]. Angang Technology, 2011, 372: 7
[1] (付魁军, 及玉梅, 王佳骥等. 大线能量焊接用船体结构钢的研究进展 [J]. 鞍钢技术, 2011, 372: 7)
[2] Liu P. New progress of oxide metallurgy technology used in high heat input welding for high strength ship plate steel [J]. World iron and steel, 2012, 1: 20
[2] (刘湃. 大线能量焊接高强船板钢氧化物冶金技术的新进展 [J]. 世界钢铁, 2012, 1: 20)
[3] Nie Y, Shang C J, Song X, et al. Properties and homogeneity of 550-MPa grade TMCP steel for ship hull [J]. Inter. J. Min. Met. Mater., 2010, 17(2): 179
[4] Yoshihide N, Hidenori F, Hajime I, et al. YS500N/mm2 high strength steel for offshore structures with good CTOD properties at welded joints [R]. Nippon Steel Technical Report, 2004, No90: 14
[5] China Classification Society. Materials and Welding Specification [M]. Beijing: China Classification Society, 2012
[5] (中国船级社. 材料与焊接规范 [M]. 北京: 中国船级社, 2012)
[6] Lei X, Huang J, Chen S, et al. Current Status and Prospectus of Ultra-high strength hull structural steels [J]. Material Science and Technology, 2015, 23(4): 7
[6] (雷玄威, 黄继华, 陈树海等. 超高强度船体结构钢的开发现状与趋势 [J]. 材料科学与工艺, 2015, 23(4): 7)
[7] Liu D, Cheng B, Luo M. F460 heavy steel plates for offshore structure and shipbuilding produced by thermomechanical control process [J]. ISIJ Int., 2011, 51(4): 603
[8] Zhang G, Wu H, Tang D. Study on low-temperature toughness mechanism of F500 grade ship plate with ultra-high strength and toughness [J]. Hot Wording Technology, 2011, 40(6): 57
[8] (张国春, 武会宾, 唐荻. F500级超高强韧船板钢的低温韧性机理研究 [J]. 热加工工艺, 2011, 40(6): 57)
[9] Zhou Y, Di G, Liu Z, et al. Effect of tempering temperature on microstructure and properties of 500 MPa grade offshore platform steel [J]. Transactions of Materials and Heat Treatment, 2011, 32(10): 106
[9] (周砚磊, 狄国标, 刘振宇等. 回火温度对500 MPa级海洋平台钢组织性能的影响 [J]. 材料热处理学报, 2011, 32(10): 106)
[10] Yue C X, Bai X H, Liu D S. F550 high strength plate steel for shipbuilding produced by TMCP [J]. Journal of Materials Engineering, 2013, 2: 7
[10] (岳重祥, 白晓虹, 刘东升. 利用TMCP开发F550高强度船板钢的实验研究 [J]. 材料工程, 2013, (2): 7)
[11] An Z. High efficient welding technology for high-strength low-alloy marine structural steels [D]. Wuhan: Wuhan University of Science and Tchnology, 2013
[11] (安正源. 海洋工程用低合金高强度厚钢板的高效焊接工艺研究 [D]. 武汉: 武汉科技大学, 2013)
[12] Yue C, Zhang S, Liu D. Microstructure and mechanical properties of NV-F690 heavy ship plate [J]. Heat Treatment of Metals, 2012, 37(9): 58
[12] (岳重祥, 张淑娟, 刘东升. 特厚NV-F690船板的组织与性能 [J]. 金属热处理, 2012, 37(9): 58)
[13] Song W, Wang G, Li S, et al. Study on toughening technique of 945 steel [J]. Hot Wording Technology, 1998, (5): 9
[13] (宋 伟, 王桂芳, 李 松等. 945钢韧化工艺研究 [J]. 热加工工艺, 1998, (5): 9)
[14] Zhang J, Wu L. Investigation of welding properties of continuously cast 945 steel plates [J]. Development and Application of Materials, 1996, 11(1): 2
[14] (张 炯, 吴伦发. 连铸945钢中板焊接性研究 [J]. 材料开发与应用, 1996, 11(1): 2)
[15] Li P, Zhang H, Jiang B, et al. Continuous cooling transformation (CCT) curve of supercooled austenite of boron-free and boron-containing 921 steel [J]. Hot Wording Technology, 1983, 2: 38
[15] (李朋兴, 张惠娟, 江伯鸿等. 无硼及含硼921钢过冷奥氏体连续冷却转变曲线(CCT 曲线) [J]. 热加工工艺, 1983, 2: 38)
[16] Ma L, Yan Y, Wei X, et al. Resistance to erosion and cavitation-abrasion of steels 907A and 921A in 3.5% NaCl solution with sand [J]. Corrosion Science and Protection Technology, 2006, 18(5): 364
[16] (马 力, 闫永贵, 魏翔云等. 907A, 921A钢的抗冲刷腐蚀和磨蚀性能 [J]. 腐蚀科学与防护技术, 2006, 18(5): 364)
[17] Zhang Z, Yan S. The propagation of surface cracks in welded connections made of type “921A” steel in a corrosive fatigue [J]. J. Huazhong Univ. of Sci. & Tech., 1992, 20(6): 37
[17] (张祖枢, 晏思聪. 921A钢焊接接头在腐蚀疲劳下表面裂纹扩展规律 [J]. 华中理工大学学报, 1992, 20(6): 37)
[18] Shi Y, Wei L, Li C. Discussion on standard for impact value of 980# steel plate [J]. Power System Engineering, 21(1): 59
[18] (石艳君, 魏琳健, 李承业. 980钢板的冲击值标准探讨 [J]. 电站系统工程, 2005, 21(1): 59)
[19] Zhang F, Bu D, Zhang G, et al. Ultra-narrow gap gas-shield metal arc welding of 980 steel [J]. Electric Welding Machine, 2006, 36(5): 51
[19] (张富巨, 卜旦霞, 张国栋等. 980钢超窄间隙熔化极气体保护焊研究 [J]. 电焊机, 2006, 36(5): 51)
[20] Yayla P, Kaluc E, Ural K. Effects of welding process on the mechanical properties of HY80 steel weldments [J]. Mater. Design, 2007, 28(6): 1898
[21] Hyatt C V, Magee K H, Porter J F, et al. Laser–assisted gas metal arc welding of 25-mm-thick HY-80 plate [J]. Weld. J., 2001, 80(7): 163
[22] Kumar S, Nath S K, Kumar V. Continuous cooling transformation behavior in the weld coarse grained heat affected zone and mechanical properties of Nb–microalloyed and HY85 steels [J]. Mater. Design, 2016, 90: 177
[23] Guduru P R, Zehnder A T, Rosakis A J, et al. Dynamic full field measurements of crack tip temperatures [J]. Eng. Fract. Mech., 2001, 69(14): 1535
[24] Philips R H, Metzbower E A. Laser beam welding of HY80 and HY100 steels using hot welding wire addition [J]. Weld. J., 1992, 71: 201s
[25] Umekuni A, Masubchi K. Usefulness of undermatched welds for high-strength steels [J]. Weld. J., 1997, 76(7): 256s
[26] Antonio A G, Palorobrto M. Austenite transformation and age hardening of HSLA-80 and ULCB steels [J]. J. Mater. Process. Tech., 2004, 155-156: 1513
[27] Das S, Ghosh A, Chatterjee S, et al. Microstructural characterization of controlled forged HSLA-80 steel by transmission electron microscopy [J]. Mater. Charact., 2003, 50(4): 305
[28] Banerjee K, Chatterjee U K. Effect of microstructure on hydrogen embrittlement of weld-simulated HSLA-80 and HSLA-100 steels [J]. Metall. Mater. Trans. A, 2003, 34A: 1297
[29] Joyce J A, Link R E, Roe C, et al. Dynamic and static characterization of compact crack arrest tests of navy and nuclear steels [J]. Eng. Fract. Mech., 2010, 77: 337
[30] Jain D, Isheim D, Hunter A H, et al. Multicomponent high-strength low-alloy steel precipitation-strengthened by sub-nanometric Cu precipitates and M2C carbides [J]. Metall. Mater. Trans. A, 2016, 47(8): 3860
[31] Lundin C D, Gill T P S, Qiao C Y P, et al. Carbon equivalence and weldability of microalloyed steels [R]. Tennessee Univ Knoxville Welding Research and Engineering Group, 1991, No. WRG-8910: SSC-35
[32] Masahiro T. Characteristics of TMCP steels and their welded joints used for hull structures [A]. Proceedings of the Twelfth International Offshore and Polar Engineering Conference [C]. Kitakyushu, 2002
[33] Wan X, Wei R, Wu K. Effect of acicular ferrite formation on grain refinement in the coarse-grained region of heat-affected zone [J]. Mater. Charact., 2010, 61: 726
[34] Lei X, Wang H, Yin Y, et al. Microstructure transformation of coarse-grained region in heat-affected zone during welding of ultra-low carbon ultra-high strength pipeline steel [J]. Transactions of the China Welding Institution, 2012.3, 33(3): 1
[34] (雷玄威, 王红鸿, 尹雨群等. 超低碳超高强X120管线钢焊接热影响区粗晶区的组织转变 [J]. 焊接学报, 2012.3, 33(3): 1)
[35] Liu D S, Cheng B G, L M. Microstructure and impact fracture behavior of HAZ of F460 heavy ship plate with high strength and toughness [J]. Acta Metallurgica Sinica, 2011, 47(10): 1233
[35] (刘东升, 程丙贵, 罗 咪. F460高强韧厚船板焊接热影响区的组织和冲击断裂行为 [J]. 金属学报, 2011, 47(10): 1233)
[36] Duan X, Wu H, Cai Q, et al. Preparation and high input welding of a FH500 ship plate steel [J]. Transactions of Materials and Heat Treatment, 2012, 33(3): 62
[36] (段修刚, 武会宾, 蔡庆伍等. 大线能量焊接用FH500高强船板钢的研制与焊接试验 [J]. 材料热处理学报, 2012, 33(3): 62)
[37] Zhang J, Cai Q, Wu H, et al. Effect of tempering temperature on microstructure and properties of E690 offshore plate steel [J]. J. Iron Steel Res. Int., 2012, 19(3): 67
[38] Cheng B,Luo M,Liu D. Microstructure and mechanical properties of welded joint for F690 heavy shipbuilding plate [J]. Heat Treatment of Metals, 2014, 39: 14
[38] (程丙贵, 罗 咪, 刘东升. F690 特厚船板钢焊接接头的组织和性能 [J]. 金属热处理, 2014, 39: 14)
[39] Yu Z, Zhang Z. Research on ductil-ebrittle transition temperature of 921A steel [J]. PTCA (Part: A Phys. Test), 2006, 42(7): 332
[39] (于兆斌, 张 庄. 921A 钢的韧脆转变温度研究 [J]. 理化检验-物理分册, 2006, 42(7): 332)
[40] Chen L, Xu G. Effects of multiple quenching and tempering on microstructure and mechanical properties of 980 steel [J]. Heat Treatment of Metals, 2015 (5): 121
[40] (陈 亮, 徐钢新. 多次调质对 980 钢组织和力学性能的影响 [J]. 金属热处理, 2015 (5): 121)
[41] Kumar S, Nath S K. Effect of weld thermal cycles on microstructures and mechanical properties in simulated heat affected zone of a HY85 steel [J]. T. Indian I. Metals, 2017, 70(1): 239
[42] Dhua S K, Mukerjee D, Sarma D S. Weldability and microstructural aspects of shielded metal arc welded HSLA-100 steel plates [J]. ISIJ Int., 2002, 42(3): 290
[43] Yan K, Ye F, Liu W. Effect of heat inputs on low temperature toughness of F550Z steel welding joints [J]. Transactions of the China Welding Institution, 2014, 35(3): 93
[43] (严 铿, 叶逢雨, 刘 炜. 焊接热输入对F550Z钢焊接接头低温韧性的影响 [J]. 焊接学报, 2014, 35(3): 93)
[44] Li F, Wu H, Tang D, et al. Microstructure characteristics of FH690 ultra-strength ship structure steel and its effects on low temperature toughness [J]. Hot Wording Technology, 2010, 39(10): 67
[44] (李 丰, 武会宾, 唐荻等. FH690级超高强船板显微组织特征及其对低温韧性影响 [J]. 热加工工艺, 2010, 39(10): 67)
[45] Katsuyuki I, Hiroyuki S, Tatsushi H. 460 MPa-yield-strength-class steel plate with JFE EWEL technology for large-heat-input welding [R]. JFE Technical Report, 2008, No.11: 7
[46] Yang H, Wang X, Qu J. Microstructure and mechanical properties of the simulated welding heat affected zone of an E550 shipbuilding steel [J]. Journal of Iron and Steel Research, 2013, 25: 35
[46] (杨 汉, 王西霞, 曲锦波. E550船板钢焊接热影响区的组织和性能 [J]. 钢铁研究学报, 2013, 25: 35)
[47] Yan H, Wu K, Wang H, et al. Effect of fast cooling on microstructure and toughness of heat affected zone in high strength offshore steel [J]. Sci. Technol. Weld. Joi., 2014, 19(4): 355
[48] Liu D, Cheng B, Chen Y. Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa [J]. Metall. Mater. Trans. A, 2013, 44(1): 440
[49] Smith N J, McGrath J T, Gianetto J A, et al. Microstructure/mechanical property relationships of submerged arc welds in HSLA 80 steel [J]. Weld. J., 1989, 68(3): 11
[50] Wu S D. New warship steel HSLA115 for aircraft carrier and its welding technique [J]. Shipbuilding Science and Technology, 2012 (2): 18
[50] (吴始栋. 航空母舰用新型钢种HSLA-115及其焊接技术 [J]. 中外船舶科技, 2012 (2): 18)
[51] Lou Y, Xiao H, Peng Y, et al. Study on microstructure and properties of welded joints of a 690 MPa grade HSLA steel [J]. Materials Science and Technology, 2012, 20: 101
[51] (娄宇航, 肖红军, 彭 云等. 690 MPa级低合金高强钢焊接接头组织性能 [J]. 材料科学与工艺, 2012, 20: 101)
[52] Ma K, Zhen S, Yi J, et al. Effect of heat input on the microstructure and mechanical properties of weld joints of 921A steel [J]. Electric Welding Machine, 2014, 44(3):50
[52] (马凯夫, 郑世达, 易江龙等. 热输入对921A钢焊接接头性能及显微组织的影响 [J]. 电焊机, 2014, 44(3):50)
[53] Yayla P, Kaluc E, Ural K. Effects of welding processes on the mechanical properties of HY80 steel weldments [J]. Mater. Design, 2007, 28(6): 1898
[54] Czyryca E J, Link R E, Wong R J, et al. Development and certification of HSLA100 steel for naval ship construction [J]. Naval Engineers Journal, 1990, 102(3): 63
[55] Wang H H, Wu K M, Lei X W, et al. Effect of fast cooling process on microstructure and toughness of heat affected zone in high strength pipeline steel X120 [J]. Sci. Techn. Weld. Joi., 2012, 17(4): 309
[56] Bonnevie E, Ferriere G, Ikhlef A, et al. Morphological aspects of martensite-austenite constituent in intercritical and coarse grain heat affected zones of structural steels [J]. Mat. Sci. Eng. A, 2004, 385(1-2): 352
[57] George K. Martensite in steel: strength and structure [J]. Mat. Sci. Eng. A, 1999, 273-275(12): 40
[58] Xie H, Du L X, Hua J, et al. Effect of thermo-mechanical cycling on the microstructure and toughness in the weld CGHAZ of a novel high strength low carbon steel [J]. Mat. Sci. Eng. A, 2015, 639(7): 482
[59] Zhong Y, Xiao F R, Zhang J W, et al. In situ TEM study of the effect of M-A films at grain boundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel [J]. Acta Mater., 2006, 54(5): 435
[60] Mazancova E, Mazanec K. Physical metallurgy characteristics of the M-A constituent formation in granular bainite [J]. J. Mater. Process. Tech., 1997, 64(1-3): 287
[61] Hu H, Xu G, Liu F. In situ study of transformation in a super bainite steel [J]. Materials Science and Technology, 2014, 22(5): 97
[61] (胡海江, 徐 光, 刘 峰. 超级贝氏体钢相变的原位观察研究 [J]. 材料科学与工艺, 2014, 22(5): 97)
[62] Liu K, He T, Wan X, et al. The effect of isothermal holding on the microstructures and mechanical properties of a low carbon alloy steel [J]. Mater. Charact., 2011, 62: 340
[63] Lei X, Wu K, Cheng L, et al. Current status and trend on toughness improvement of coarse-grained heat-affected zone of high strength high toughness pipeline steels [J]. Transactions of Materials and Heat Treatment, 2014; 35(5): 1
[63] (雷玄威, 吴开明, 成 林等. 改善高强韧管线钢焊接热影响区粗晶区韧性的现状与趋势 [J]. 材料热处理学报, 2014, 35(5): 1)
[64] Zhang Z, Farrar R A. Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals [J]. Mater. Sci. Technol., 1996, 12(3): 237
[65] Wang X. The transformation behavior and grain refinement mechanism of acicular ferrite in high strength steel with high heat input welding [D]. Wuhan: Wuhan University of Science and Tchnology, 2013
[65] (万响亮. 大线能量焊接用高强度钢针状铁素体转变行为及晶粒细化机制 [D]. 武汉: 武汉科技大学, 2013)
[66] Bhadeshia H K D H. Bainite in steels [M]. London: University of Cambridge, 2001
[67] Bayraktar E, Kaplan D. Mechanical and metallurgical investigation of martensite-austenite constituents in simulated welding conditions [J]. J. Mater. Process. Technol., 2004, 153-154: 87
[68] Sung H K, Lee D H, Shin S Y, et al. Effect of finish cooling temperature on microstructure and mechanical properties of high-strength bainitic steels containing Cr, Mo, and B [J]. Mat. Sci. Eng. A, 2015, 624: 14
[69] Yu L, Wang H H, Huang G, et al. Improvement of impact toughness of simulated heat-affected zone in HSLA steels by addition of aluminum [J]. Mater. Sci. Technol., 2014, 30: 1951
[70] Yu S F, Lei Y, Huang A G, et al. Oxides metallurgy technology and its application [J]. Materials Review, 2004, 18(8): 50
[70] (余圣甫, 雷 毅, 黄安国等. 氧化物冶金技术及其应用 [J]. 材料导报, 2004, 18(8): 50)
[71] Zhu L, Sun L. Application and prospect for shipbuilding steel development with oxide metallurgy technique [J]. Steelmaking, 2017, 33(5): 7
[71] (朱立光, 孙立根. 氧化物冶金技术及其在船体钢开发中的应用及展望 [J]. 炼钢, 2017, 33(5):7)
[72] Zhao S, Pan X, Wang Y, et al. New progress and trend of development of oxide metallurgy process [J]. Steelmaking, 2009, 25(2): 66
[72] (赵素华, 潘秀兰, 王艳红等. 氧化物冶金工艺的新进展及其发展趋势 [J]. 炼钢, 2009, 25(2): 66)
[73] Kim W Y, Jo J O, Chung T I, et al. Thermodynamics of titanium, nitrogen and TiN formation in liquid iron [J]. ISIJ Int., 2007, 47(8): 1082
[74] Shome M, Mohanty O N. Continuous cooling transformation diagrams applicable to the heat-affected zone of HSLA-80 and HSLA-100 steels [J]. Metall. Mater. Trans. A, 2006, 37(7): 2159
[75] Wang X, Wu K, Wang H, et al. Applications of oxide metallurgy technology on high heat input welding steel [J]. China Metallurgy, 2015, 25(6): 6
[75] (万响亮, 吴开明, 王恒辉等. 氧化物冶金技术在大线能量焊接用钢的应用 [J]. 中国冶金, 2015, 25(6): 6)
[76] Chen Q, Jin Z. The Fe-Cu system: A thermodynamic evaluation [J]. Metall. Mater. Trans. A, 1995, 26(2): 417
[77] Lei X, Wu K, Wang H, et al. Microstructure evolution and alloying features of a developed high strength and high toughness weld metal used for pipeline steels [J]. J. Coastal Res., 2015, 73: 265
[78] Liu Z,Chen J,Tang S, et al. State of the Art Development of the Manufacturing Technologies of New Generation War Ship Steels [J]. Materials China, 2014, 33(9-10): 595
[78] (刘振宇, 陈 俊, 唐 帅等. 新一代舰船用钢制备技术的现状与发展展望 [J]. 中国材料进展, 2014, 33(9-10): 595)
[79] Thompson S W, Krauss G. Copper precipitation during continuous cooling and isothermal aging of A710-type steels [J]. Metall. Mater. Trans. A, 1996, 27(6): 1573
[80] Wang Q, Shang C, Chen D, et al. Physical simulation and experimental examination of ε-Cu particles dissolution during welding of copper precipitation strengthening steel [J]. J. Iron Steel Res. Int., 2007, 14(4): 58
[81] Luo X, Chen X, Wang Z, et al. High toughness independent of low-medium heat inputs in coarse-grain heat-affected zone of a designed HSLA steel [J]. Steel Res. Int., 2017, 88: 170079.
[82] Luo X, Chen X, Wang T, et al. Effect of morphologies of martensite–austenite constituents on impact toughness in intercritically reheated coarsegrained heat-affected zone of HSLA steel [J]. Mater. Sci. Eng. A, 2018, 710: 192
[83] Lei X, Dong S, Huang J, et al. Phase evolution and mechanical properties of coarse-grained heat affected zone of a Cu-free high strength low alloy hull structure steel [J]. Mat. Sci. Eng. A, 2018, 718: 437
[1] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[4] HE Ying, LI Chaoqun, CHEN Xiaoli, LONG Zhimei, LAI Jiaqi, SHAO Bin, MA Yilong, CHEN Dengming, DONG Jiling. Recent Development for Preparation Processes of Sm2Fe17N x Powders with High Magnetic Properties[J]. 材料研究学报, 2022, 36(5): 321-331.
[5] SHAO Siwu, ZHENG Yuting, AN Kang, HUANG Yabo, CHEN Liangxian, LIU Jinlong, WEI Junjun, LI Chengming. Progress on Application of Bias Technology for Preparation of Diamond Films[J]. 材料研究学报, 2022, 36(3): 161-174.
[6] ZHAO Ning, JIAO Da, ZHU Yankun, LIU Dexue, LIU Zengqian, ZHANG Zhefeng. Material Science Mechanism for Efficient Protection of Natural Armor[J]. 材料研究学报, 2022, 36(1): 1-7.
[7] SONG Xiaolong, LUO Weijing, NAN Yanli. A Review for Synthesis and Applications of Carbon Nanohorns[J]. 材料研究学报, 2021, 35(6): 401-410.
[8] ZHAO Wanli, SUO Hongli, LIU Min, MA Lin, DAI Yinming, ZHANG Zili. Research Progress in Preparation of MgB2 Bulk by Diffusion Method[J]. 材料研究学报, 2021, 35(6): 411-418.
[9] LANG Zhenqian, YE Zheng, YANG Jian, HUANG Jihua. Research Progress of Repair Technology for Surface Defects of Single Crystal Superalloy[J]. 材料研究学报, 2021, 35(3): 161-174.
[10] LI Zhuang, XU Qiujie, LIU Guojin, ZHANG Yunxiao, ZHOU Lan, SHAO Jianzhong. Structural Coloration of Photonic Crystals Based On Self-assembly of Colloid Microspheres[J]. 材料研究学报, 2021, 35(3): 175-183.
[11] YU Jianzhong, XV Xinling, YE Song. Research Progress on the Applications of Silver-loaded Zeolites[J]. 材料研究学报, 2021, 35(11): 801-810.
[12] HOU Zhiquan,GUO Meng,LIU Yuxi,DENG Jiguang,DAI Hongxing. Synthesis of Intermetallic Compounds and Their Catalytic Applications[J]. 材料研究学报, 2020, 34(2): 81-91.
[13] WU Qiaofeng, ZHANG Fu, YU Yue, ZHANG Meng, YU Hua, FAN Shuanshi. Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. 材料研究学报, 2020, 34(11): 811-821.
[14] ZHOU Haitao, WANG Yanbo, XIAO Lu, SUN Jingli, XU Yuling, CHEN Ge. Research Status and Developing Trends of Preparation and Interface Control of Magnesium Matrix Composites with Carbon-containing Reinforcements[J]. 材料研究学报, 2020, 34(11): 801-810.
[15] Ziqing LI, Wenxiu HE, Yongqiang ZHANG, Huiying YU, Xingsheng LI, Bin LIU. Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene[J]. 材料研究学报, 2018, 32(8): 616-624.
No Suggested Reading articles found!