Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (11): 809-814    DOI: 10.11901/1005.3093.2019.196
ARTICLES Current Issue | Archive | Adv Search |
Self-protection Performance of Nano-fuzz Formed on W-plate Surface Due to He+ Irradiation
WU Liang,FAN Hongyu(),NI Weiyuan(),XU Yang,BAO Sen,ZHANG Yuwei,ZHOU Siqian,NIU Jinhai
School of Physics and Material Engineering, Dalian Minzu University, Dalian 116600, China
Cite this article: 

WU Liang,FAN Hongyu,NI Weiyuan,XU Yang,BAO Sen,ZHANG Yuwei,ZHOU Siqian,NIU Jinhai. Self-protection Performance of Nano-fuzz Formed on W-plate Surface Due to He+ Irradiation. Chinese Journal of Materials Research, 2019, 33(11): 809-814.

Download:  HTML  PDF(1809KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polycrystalline tungsten (W) plate has been irradiated with low-energy (200 eV) and large-flux He+ with the fluences of 1.0×1025-1.0×1026 ions/m2 at elevated temperatures of 1023 K and 1373 K in a vacuum chamber of 30 Pa. The mass loss, surface morphology and defects distribution of irradiated W plate were characterized by means of weighing method, scanning electron microscope and conductive atomic force microscope. The results show that the erosion rate of cellular- or nano-fuzz-like areas is lower than 30% of that for the smooth areas on W plate surface. W nano-fuzz can keep the sputtered W atoms from escaping from the surface during large-flux He+ irradiation. The W nano-fuzz can act as a self-protective barrier on W-surface against the strong surface erosion under ITER relevant He+ irradiation conditions.

Key words:  metallography      tungsten nano-filaments      irradiation      self-protection     
Received:  12 April 2019     
ZTFLH:  TG14  
Fund: National Natural Science Foundation of China(11405023);National Natural Science Foundation of China(21573035);Natural Science Foundation of Liaoning Province(20180510006);Dalian Science and Technology Star Project(2017RQ149);National College Students Innovation Training Project of China(G201912026057);“Taiyangniao” Student Research Project of Dalian Minzu University(2019287)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.196     OR     https://www.cjmr.org/EN/Y2019/V33/I11/809

Fig.1  Typical SEM images of polycrystalline W irradiated at the fluences of 1.0×1025 ions/m2 (a), 3.0×1025 ions/m2 (b), 6.0×1025 ions/m2 (c) and 1.0×1026 ions/m2 at 1023 K (d)
Fig.2  Typical SEM images of polycrystalline W irradiated at the fluences of 1.0×1025 ions/m2 (a), 3.0×1025 ions/m2 (b), 6.0×1025 ions/m2 (c) and 1.0×1026 ions/m2 at 1023 K (d)
Fig.3  Typical cross-sectional SEM view (a) of polycrystalline W irradiated at temperature of 1373 K and at He+ fluence of 1.0×1026 ions/m2 and the thickness of cellular or fuzzy layers as a function of He+ fluence (b)
Fig.4  CAFM analysis the surface topography (left) and the simultaneously measured current images (right) of W irradiated with different He ion fluencies at 1023 K (a) 3.0×1025 ions/m2, (b) 6.0×1025ions/m2,(c) 1.0×1026 ions/m2
Fig.5  Mass loss (a) and sputtering yields (b) of irradiated W as a function of He ions fluencies
Fig.6  Schematic representation of the self-protective mechanism of W nanostuctured layer via He plasma irradiation
[1] Baldwin M J, Doerner R P. Formation of helium induced nanostructure ‘fuzz’ on various tungsten grades [J]. J. Nucl. Mater., 2010, 404: 165
[2] Liu L, Liu D P, Fan H Y, et al. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions [J]. J. Nucl. Mater., 2016, 471: 1
[3] Ueda Y, Peng H Y, Lee H T, et al. Helium effects on tungsten surface morphology and deuterium retention [J]. J. Nucl. Mater., 2013, 442: S267
[4] Kajita S, Yoshida N, Yoshihara R, et al. TEM observation of the growth process of helium nanobubbles on tungsten: nanostructure formation mechanism [J]. J. Nucl. Mater., 2011, 418: 152
[5] Li C, Greuner H, Yuan Y, et al. Effects of temperature on surface modification of W exposed to He particles [J]. J. Nucl. Mater., 2014, 455: 201
[6] Nishijima D, Baldwin M J, Doerner R P, et al. Sputtering properties of tungsten ‘fuzzy’ surfaces [J]. J. Nucl. Mater., 2011, 415: S96
[7] Ueda Y, Coenen J W, Temmerman G D, et al. Research status and issues of tungsten plasma facing materials for ITER and beyond [J]. J. Fusion Eng. Des., 2014, 89: 901
[8] Yang Q, You Y W, Liu L, et al. Nanostructured fuzz growth on tungsten under low-energy and high-flux He irradiation [J]. J. Sci. Rep., 2015, 5: 10959
[9] Fan H, Yang D, Sun L, et al. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy [J]. J. Nucl. Instrum. Meth. B., 2013, 312: 90
[10] Yang M, Fan H Y, Xie X D, et al. Effect of high energy W6+ pre-implantation on surface microstructure of tungsten irradiated by low-energy hydrogen ions [J]. Chinese Journal of Materials Research, 2016, 30(4): 277
[10] (杨 铭, 范红玉, 解晓东, 郭一鸣, 刘云鹤, 李 坤. 高能W6+预辐照对钨表面微结构的影响 [J]. 材料研究学报, 2016, 30(4): 277)
[11] Temmerman G De, Bystrov K, Doerner R P, et al. Helium effects on tungsten under fusion-relevant plasma loading conditions [J]. J. Nucl. Mater., 2013, 438: S78
[12] Wu Y F, Ni W Y, Fan H Y, et al. Effects of He+ energy and irradiation temperature on W sputtering yields under fusion-relevant conditions [J]. J. Nucl. Mater., 2016, 470: 164
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[5] LIU Dan, LEI Yucheng, ZHANG Weiwei, LI Tianqing, YAO Yiqiang, DING Xiangbin. Effect of He Ion Irradiation on Microstructure and Properties of CLAM Steel Weld[J]. 材料研究学报, 2022, 36(8): 609-616.
[6] HU Ruihang, YANG Zhen, LEI Qijun, LI Xinyang, DONG Ziyu, ZHANG Xiaotong, FAN Hongyu, NIU Jinhai. Effect of Helium Ions Irradiation on Stability of Nano-tungsten Whiskers[J]. 材料研究学报, 2022, 36(11): 850-854.
[7] XUAN Jingfan, FAN Hongyu, BAI Ying, HU Ruihang, LI Xinyang, TAO Wenchen, NI Weiyuan, NIU Jinhai. Etching Behavior of Tungsten under Irradiation of Low Energy and High Flux Hydrogen Ions[J]. 材料研究学报, 2020, 34(9): 659-664.
[8] SHI Yuanji,YU Linhui,YU Zhaopeng,CHENG Gong,WU Xiaochun,TENG Hongchun. High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel[J]. 材料研究学报, 2020, 34(2): 125-136.
[9] Jian TU,Lei LIU,Shirun DING,Jianbo LI,Zhiming ZHOU,Anping DONG,Can HUANG. Effect of Degree and Temperature of Pre-deformation on Deformation Mechanism and Subsequent Recrystallization Behavior of High-entropy Alloy CoCrFeMnNi[J]. 材料研究学报, 2019, 33(6): 427-434.
[10] Zhiling HAO,Hongyu FAN,Jiayu GUO,Tingting HU,Meng LI,Hejing CUI,Bixuan ZHANG. He Plasma Assisted Preparation of Nanostructure Tungsten Materials[J]. 材料研究学报, 2017, 31(6): 415-421.
[11] Zhenyu FU,Zequn WANG,Pingping LIU,Yinping WEI,Farong WAN,Qian ZHAN. Irradiation Hardening and Defects Distribution in CLAM Steel under Deuterium and Helium Ion Irradiation[J]. 材料研究学报, 2016, 30(9): 641-648.
[12] YANG Ming, FAN Hongyu, XIE Xiaodong, GUO Yiming, LIU Yunhe, LI Kun. Effect of High Energy W6+ Pre-implantation on Surface Microstructure of Tungsten Irradiated by Low-energy Hydrogen Ions[J]. 材料研究学报, 2016, 30(4): 277-284.
[13] Wei PAN,Zulai LI,Quan SHAN,Yehua JIANG,Zhiyang FENG,Rong ZHOU. Effect of Heat Treatment Process on Mechanical Properties of a Medium Carbon Low Alloy Steel[J]. 材料研究学报, 2015, 29(6): 422-428.
[14] Dongdong WANG,Can LIANG,Wenjie BAI,Yongquan LI,Quan DUAN. Intergranular Corrosion of 316LN Stainless Steel Welded Joints[J]. 材料研究学报, 2015, 29(4): 299-306.
[15] Hao ZHANG,Jiankun WANG,Rui WANG,Yongchun DONG. Synthesis and Physicochemical Characteristics of Acetylated Corn Starch under Microwave Assistance[J]. 材料研究学报, 2014, 28(4): 286-292.
No Suggested Reading articles found!