|
|
He Plasma Assisted Preparation of Nanostructure Tungsten Materials |
Zhiling HAO,Hongyu FAN,Jiayu GUO( ),Tingting HU,Meng LI,Hejing CUI,Bixuan ZHANG |
School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China |
|
Cite this article:
Zhiling HAO,Hongyu FAN,Jiayu GUO,Tingting HU,Meng LI,Hejing CUI,Bixuan ZHANG. He Plasma Assisted Preparation of Nanostructure Tungsten Materials. Chinese Journal of Materials Research, 2017, 31(6): 415-421.
|
Abstract Nanostructure tungsten materials were successfully prepared by He plasma assisted methods. The effects of ions fluences and discharge power on the surface morphology of tungsten were investigated. Scanning electron microscopy and tapping mode atomic force microscopy were used to characterize the sample topography and surface roughness under different discharge condition. At the discharge power of 6 kW and ion energy of 220 eV, it showed that the tungsten surface formed the nano pinhole structure and then the pore size gradually increased with increasing ion fluences. When the ion fluence increased to 1.0×1026 ionsm-2, the sample surface formed nano tungsten fuzz. The cross section analysis also showed that the nano structure layer thickness increases with the increase of irradiation ion flunece. High-resolution scanning electron microscope analysis found that there are a large number of nanoHe bubble at the interface of tungsten fuzz root and tungsten bulk, which gives the direct evidence that the tungsten fuzz forming is derived from He bubble. This work is of great significance for the further understanding the formation mechanism of nano tungsten fuzz.
|
Received: 31 October 2016
|
Fund: Supported by National Natural Science Foundation of China (No.11405023), Scientific Research Project of Education Department of Liaoning Province (No.L2014539), Natural Science Foundation of Liaoning Province (No.201602189), National College Students Innovation Training Project of China (No.G201512026043) and “Taiyangniao” Student Research Project of Dalian Nationalities University (No.tyn2016404) |
[1] | M. G. Walter, E. L.Warren, J. R.McKone, et al. Solar water splitting cells[J]. Chem.Rev, 2010, 110(11): 6446 | [2] | C. G.Morales-Guio, L. Stern, X. L. Hu. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chem. Soc.Rev, 2014, 43: 6555 | [3] | R. L. Chamousis, F. E. Osterloh.Use of potential determining ionsto control energetics and photochemical charge transfer of a nanoscale water splitting photocatalyst[J]. Energy Environ. Sci, 2014, 7: 736 | [4] | A. Fujishima, K. Honda.Electrochemical Photolysis ofWater at aSemiconductor Electrode[J]. Nature, 1972, 238: 7 | [5] | T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, Photo-electrochemicalhydrogen generation from water using solar energy[J]. Materials-related aspects, Int. J. Hydrogen.Energy, 2002, 27(10): 991 | [6] | A. Currao.Photoelectrochemical water splitting[J]. Chimia, 2007, 61: 815 | [7] | LI H J, CHEN G, LI Z H.Synthesis and photocatalytic decomposition of water under visible light irradiation of La2Ti2-xCoxO7 with pyrochlore structure[J] Acta Phys. - Chim. Sin., 2007, 23(5): 761 | [7] | (李鸿建, 陈刚, 李中华, 烧绿石结构La2Ti2-xCoxO7的制备及可见光分解水性能, 物理化学学报, 2007, 23(5): 761) | [8] | F. E. Osterloh.Inorganic nanostructures for photoelectrochemicaland photocatalytic water splitting[J]. Chem. Soc. Rev, 2013, 42: 2294 | [9] | J. Son, J. Wang, F. E.O sterloh, et al. Casey, A tellurium-substituted Lindqvist- type polyoxoniobate showing high H2 evolutioncatalyzed by tellurium nanowires via photodecomposition[J]. Chem.Commun, 2014, 50: 836 | [10] | Z. Jiao, J. Wang, L. Ke, et al.Morphology-Tailored synthesis of tungsten trioxide (hydrate) thin films and theirphotocatalytic properties[J]. Appl. Mater. Interfaces, 2011, 3: 229 | [11] | C. Janáky, K. Rajeshwar, N. R. de Tacconi, et al. Tungsten- based oxidesemiconductors for solar hydrogengeneration[J]. Catal. Today, 2013, 199: 53 | [12] | R. Solarska, K. Bienkowski, S. Zoladek, et al.Enhanced water splitting at thin filmtungsten trioxide photoanodes bearing plasmonic gold- polyoxometalate particles[J]. Angew. Chem. Int. Ed, 2014, 53: 14196 | [13] | B. A. Aragaw, C. Pan, W. Su, et al.Facileone- pot controlled synthesis of Sn and C codoped single crystal TiO2 nanowire arrays for highly efficient photoelectrochemical water splitting[J]. Appl. Catal. B, 2015, 163: 78 | [14] | X. Liu, F. Y. Wang, Q. Wang.Nanostructure- based WO3 photoanodes for photoelectrochemical water splittin[J]. Phys. Chem.Chem. Phys, 2012, 14: 794 | [15] | V. Cristino, S. Caramori, R. Argazzi, et al.Efficient Photoelectrochemical Water Splitting by Anodically Grown WO3 Electrodes[J]. Langmuir, 2011, 27(11): 7276 | [16] | C. Santato, M. Odziemkowski, M. Ulmann, et al.Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications[J]. J. Am. Chem. Soc, 2001, 123(43): 10639 | [17] | C. Santato, M. Ulmann, J. Augustynski.Enhanced visible light conversion efficiency using nanocrystalline WO3 films[J]. Adv. Mater, 2001, 13(7): 511 | [18] | B. Yang, Y. Zhang, E. Drabarek, et al.Enhanced photoelectrochemical activity of sol- gel tungsten trioxidefilms through textural control[J]. Chem. Mater, 2007, 19(23): 5664 | [19] | B. Marsen, E. L. Miller, D. Paluselli, et al.Progress insputtered tungsten trioxide for photoelectrode applications[J]. Int. J. Hydrogen Energy, 2007, 32(15): 3110 | [20] | H. Zheng, A. Z. Sadek, K. Latham, et al.Nanoporous WO3 from anodized RF sputtered tungsten thin films[J]. Electrochem. Commun, 2009, 11(4): 768 | [21] | X. Zhang, X. Lu, Y. Shen, et al.Threedimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis[J]. Chem.Commun, 2011, 47: 5804 | [22] | V.Chakrapani, J. Thangala, M. K. Sunkara.WO3 and W2N nanowirearrays for photoelectrochemical hydrogen production[J]. Int. J. Hydrogen. Energy, 2009, 34(22): 9050 | [23] | Q. Yang, Y. You, L. Liu, et al.Nanostructured fuzz growth ontungsten underlow-energy andhigh-flux He irradiation[J]. Scientific Reports, 2015, 5, 10959 | [24] | Q. Yang, H. Fan, W. Ni, et al.Observation of interstitial loops in He + irradiated W byconductive atomicforce microscopy[J]. Acta Material, 2015, 92: 178 | [25] | D. Nishijima, M. Y. Ye, N. Ohno, et al. Incident ion energydependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation [J]. J. Nucl. Mater, 2003, 313-316: 97 | [26] | A. Debelle, M. F. Barthe, T. Sauvage, et al.Helium behaviour and vacancy defect distribution in helium implanted tungsten[J]. J. Nucl. Mater, 2007, 362: 181 | [27] | Y. Watanabe, H. Iwakiri, N. Yoshida, et al.Formation of interstitial loops in tungsten under helium ion irradiation: Rate theory modeling and experiment[J]. Nucl. Instrum. Methods Phys. Res. B, 2007, 255: 32 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|