Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (6): 415-421    DOI: 10.11901/1005.3093.2015.775
Orginal Article Current Issue | Archive | Adv Search |
He Plasma Assisted Preparation of Nanostructure Tungsten Materials
Zhiling HAO,Hongyu FAN,Jiayu GUO(),Tingting HU,Meng LI,Hejing CUI,Bixuan ZHANG
School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China
Cite this article: 

Zhiling HAO,Hongyu FAN,Jiayu GUO,Tingting HU,Meng LI,Hejing CUI,Bixuan ZHANG. He Plasma Assisted Preparation of Nanostructure Tungsten Materials. Chinese Journal of Materials Research, 2017, 31(6): 415-421.

Download:  HTML  PDF(5489KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanostructure tungsten materials were successfully prepared by He plasma assisted methods. The effects of ions fluences and discharge power on the surface morphology of tungsten were investigated. Scanning electron microscopy and tapping mode atomic force microscopy were used to characterize the sample topography and surface roughness under different discharge condition. At the discharge power of 6 kW and ion energy of 220 eV, it showed that the tungsten surface formed the nano pinhole structure and then the pore size gradually increased with increasing ion fluences. When the ion fluence increased to 1.0×1026 ionsm-2, the sample surface formed nano tungsten fuzz. The cross section analysis also showed that the nano structure layer thickness increases with the increase of irradiation ion flunece. High-resolution scanning electron microscope analysis found that there are a large number of nanoHe bubble at the interface of tungsten fuzz root and tungsten bulk, which gives the direct evidence that the tungsten fuzz forming is derived from He bubble. This work is of great significance for the further understanding the formation mechanism of nano tungsten fuzz.

Key words:  metallography      nano structured tungsten      irradiation      He bubble     
Received:  31 October 2016     
Fund: Supported by National Natural Science Foundation of China (No.11405023), Scientific Research Project of Education Department of Liaoning Province (No.L2014539), Natural Science Foundation of Liaoning Province (No.201602189), National College Students Innovation Training Project of China (No.G201512026043) and “Taiyangniao” Student Research Project of Dalian Nationalities University (No.tyn2016404)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.775     OR     https://www.cjmr.org/EN/Y2017/V31/I6/415

Fig.1  SEM surface analysis of W after irradiated at He+fluence of (a) 1.0×1025 ionsm-2; (b) 3.1×1025 ionsm-2; (c) 6.2×1025 ionsm-2 and (d) 1.0×1026 ionsm-2 with 6 kW discharge power
Fig.2  The surface pore distribution of W sample irradiated at He+fluence of (a) 1.0×1025 ionsm-2; (b) 3.1×1025 ionsm-2and (c) 6.2×1025 ionsm-2 with 6 kW discharge power
Fig.3  SEM cross section analysis of W after irradiated at He+fluence of (a) 1.0×1025 ionsm-2; (b) 3.1×1025 ionsm-2; (c) 6.2×1025 ionsm-2 and (d) 1.0×1026 ionsm-2 with 6 kW discharge power
Fig.4  Surface RMS values (a) and nano-stucture height (b) of W sample as a function of He ion irradiation fluencies
Fig.5  surface analysis of W after irradiated at discharge power of (a) 3 kW and (b) 8 kW
Fig.6  High-resolution SEM image of W sample irradiated at 1.0×1026 ionsm-2 He ions fluence with 6 kW discharge power
Fig.7  A schematic representation of the formation process of W nanostuctured layer via He plasma irradiation
[1] M. G. Walter, E. L.Warren, J. R.McKone, et al. Solar water splitting cells[J]. Chem.Rev, 2010, 110(11): 6446
[2] C. G.Morales-Guio, L. Stern, X. L. Hu. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chem. Soc.Rev, 2014, 43: 6555
[3] R. L. Chamousis, F. E. Osterloh.Use of potential determining ionsto control energetics and photochemical charge transfer of a nanoscale water splitting photocatalyst[J]. Energy Environ. Sci, 2014, 7: 736
[4] A. Fujishima, K. Honda.Electrochemical Photolysis ofWater at aSemiconductor Electrode[J]. Nature, 1972, 238: 7
[5] T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, Photo-electrochemicalhydrogen generation from water using solar energy[J]. Materials-related aspects, Int. J. Hydrogen.Energy, 2002, 27(10): 991
[6] A. Currao.Photoelectrochemical water splitting[J]. Chimia, 2007, 61: 815
[7] LI H J, CHEN G, LI Z H.Synthesis and photocatalytic decomposition of water under visible light irradiation of La2Ti2-xCoxO7 with pyrochlore structure[J] Acta Phys. - Chim. Sin., 2007, 23(5): 761
[7] (李鸿建, 陈刚, 李中华, 烧绿石结构La2Ti2-xCoxO7的制备及可见光分解水性能, 物理化学学报, 2007, 23(5): 761)
[8] F. E. Osterloh.Inorganic nanostructures for photoelectrochemicaland photocatalytic water splitting[J]. Chem. Soc. Rev, 2013, 42: 2294
[9] J. Son, J. Wang, F. E.O sterloh, et al. Casey, A tellurium-substituted Lindqvist- type polyoxoniobate showing high H2 evolutioncatalyzed by tellurium nanowires via photodecomposition[J]. Chem.Commun, 2014, 50: 836
[10] Z. Jiao, J. Wang, L. Ke, et al.Morphology-Tailored synthesis of tungsten trioxide (hydrate) thin films and theirphotocatalytic properties[J]. Appl. Mater. Interfaces, 2011, 3: 229
[11] C. Janáky, K. Rajeshwar, N. R. de Tacconi, et al. Tungsten- based oxidesemiconductors for solar hydrogengeneration[J]. Catal. Today, 2013, 199: 53
[12] R. Solarska, K. Bienkowski, S. Zoladek, et al.Enhanced water splitting at thin filmtungsten trioxide photoanodes bearing plasmonic gold- polyoxometalate particles[J]. Angew. Chem. Int. Ed, 2014, 53: 14196
[13] B. A. Aragaw, C. Pan, W. Su, et al.Facileone- pot controlled synthesis of Sn and C codoped single crystal TiO2 nanowire arrays for highly efficient photoelectrochemical water splitting[J]. Appl. Catal. B, 2015, 163: 78
[14] X. Liu, F. Y. Wang, Q. Wang.Nanostructure- based WO3 photoanodes for photoelectrochemical water splittin[J]. Phys. Chem.Chem. Phys, 2012, 14: 794
[15] V. Cristino, S. Caramori, R. Argazzi, et al.Efficient Photoelectrochemical Water Splitting by Anodically Grown WO3 Electrodes[J]. Langmuir, 2011, 27(11): 7276
[16] C. Santato, M. Odziemkowski, M. Ulmann, et al.Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications[J]. J. Am. Chem. Soc, 2001, 123(43): 10639
[17] C. Santato, M. Ulmann, J. Augustynski.Enhanced visible light conversion efficiency using nanocrystalline WO3 films[J]. Adv. Mater, 2001, 13(7): 511
[18] B. Yang, Y. Zhang, E. Drabarek, et al.Enhanced photoelectrochemical activity of sol- gel tungsten trioxidefilms through textural control[J]. Chem. Mater, 2007, 19(23): 5664
[19] B. Marsen, E. L. Miller, D. Paluselli, et al.Progress insputtered tungsten trioxide for photoelectrode applications[J]. Int. J. Hydrogen Energy, 2007, 32(15): 3110
[20] H. Zheng, A. Z. Sadek, K. Latham, et al.Nanoporous WO3 from anodized RF sputtered tungsten thin films[J]. Electrochem. Commun, 2009, 11(4): 768
[21] X. Zhang, X. Lu, Y. Shen, et al.Threedimensional WO3 nanostructures on carbon paper: photoelectrochemical property and visible light driven photocatalysis[J]. Chem.Commun, 2011, 47: 5804
[22] V.Chakrapani, J. Thangala, M. K. Sunkara.WO3 and W2N nanowirearrays for photoelectrochemical hydrogen production[J]. Int. J. Hydrogen. Energy, 2009, 34(22): 9050
[23] Q. Yang, Y. You, L. Liu, et al.Nanostructured fuzz growth ontungsten underlow-energy andhigh-flux He irradiation[J]. Scientific Reports, 2015, 5, 10959
[24] Q. Yang, H. Fan, W. Ni, et al.Observation of interstitial loops in He + irradiated W byconductive atomicforce microscopy[J]. Acta Material, 2015, 92: 178
[25] D. Nishijima, M. Y. Ye, N. Ohno, et al. Incident ion energydependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation [J]. J. Nucl. Mater, 2003, 313-316: 97
[26] A. Debelle, M. F. Barthe, T. Sauvage, et al.Helium behaviour and vacancy defect distribution in helium implanted tungsten[J]. J. Nucl. Mater, 2007, 362: 181
[27] Y. Watanabe, H. Iwakiri, N. Yoshida, et al.Formation of interstitial loops in tungsten under helium ion irradiation: Rate theory modeling and experiment[J]. Nucl. Instrum. Methods Phys. Res. B, 2007, 255: 32
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[3] WANG Wei, PENG Yiqing, DING Shijie, CHANG Wenjuan, GAO Yuan, WANG Kuaishe. Tribological Properties of Graphite-based Solid Lubricating Coatings for Ti-6Al-4V Alloy at 500~800oC[J]. 材料研究学报, 2023, 37(6): 432-442.
[4] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[5] LIU Dan, LEI Yucheng, ZHANG Weiwei, LI Tianqing, YAO Yiqiang, DING Xiangbin. Effect of He Ion Irradiation on Microstructure and Properties of CLAM Steel Weld[J]. 材料研究学报, 2022, 36(8): 609-616.
[6] HU Ruihang, YANG Zhen, LEI Qijun, LI Xinyang, DONG Ziyu, ZHANG Xiaotong, FAN Hongyu, NIU Jinhai. Effect of Helium Ions Irradiation on Stability of Nano-tungsten Whiskers[J]. 材料研究学报, 2022, 36(11): 850-854.
[7] XUAN Jingfan, FAN Hongyu, BAI Ying, HU Ruihang, LI Xinyang, TAO Wenchen, NI Weiyuan, NIU Jinhai. Etching Behavior of Tungsten under Irradiation of Low Energy and High Flux Hydrogen Ions[J]. 材料研究学报, 2020, 34(9): 659-664.
[8] SHI Yuanji,YU Linhui,YU Zhaopeng,CHENG Gong,WU Xiaochun,TENG Hongchun. High Temperature Stability and Thermal Fatigue Behavior of DM Hot Working Die Steel[J]. 材料研究学报, 2020, 34(2): 125-136.
[9] Jian TU,Lei LIU,Shirun DING,Jianbo LI,Zhiming ZHOU,Anping DONG,Can HUANG. Effect of Degree and Temperature of Pre-deformation on Deformation Mechanism and Subsequent Recrystallization Behavior of High-entropy Alloy CoCrFeMnNi[J]. 材料研究学报, 2019, 33(6): 427-434.
[10] WU Liang,FAN Hongyu,NI Weiyuan,XU Yang,BAO Sen,ZHANG Yuwei,ZHOU Siqian,NIU Jinhai. Self-protection Performance of Nano-fuzz Formed on W-plate Surface Due to He+ Irradiation[J]. 材料研究学报, 2019, 33(11): 809-814.
[11] Zhenyu FU,Zequn WANG,Pingping LIU,Yinping WEI,Farong WAN,Qian ZHAN. Irradiation Hardening and Defects Distribution in CLAM Steel under Deuterium and Helium Ion Irradiation[J]. 材料研究学报, 2016, 30(9): 641-648.
[12] YANG Ming, FAN Hongyu, XIE Xiaodong, GUO Yiming, LIU Yunhe, LI Kun. Effect of High Energy W6+ Pre-implantation on Surface Microstructure of Tungsten Irradiated by Low-energy Hydrogen Ions[J]. 材料研究学报, 2016, 30(4): 277-284.
[13] Wei PAN,Zulai LI,Quan SHAN,Yehua JIANG,Zhiyang FENG,Rong ZHOU. Effect of Heat Treatment Process on Mechanical Properties of a Medium Carbon Low Alloy Steel[J]. 材料研究学报, 2015, 29(6): 422-428.
[14] Dongdong WANG,Can LIANG,Wenjie BAI,Yongquan LI,Quan DUAN. Intergranular Corrosion of 316LN Stainless Steel Welded Joints[J]. 材料研究学报, 2015, 29(4): 299-306.
[15] Hao ZHANG,Jiankun WANG,Rui WANG,Yongchun DONG. Synthesis and Physicochemical Characteristics of Acetylated Corn Starch under Microwave Assistance[J]. 材料研究学报, 2014, 28(4): 286-292.
No Suggested Reading articles found!