Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (10): 728-734    DOI: 10.11901/1005.3093.2019.146
ARTICLES Current Issue | Archive | Adv Search |
Hydrothermal Synthesis and Photocatalytic Activity of CuO/ZnO Composite Photocatalyst
XIE Liang1,WANG Ping1,LI Zhifeng1(),LIU Dehong1,WU Ying2
1. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2. Zhejiang NAVIION Technology Co. , Ltd, Hangzhou 310000, China
Cite this article: 

XIE Liang,WANG Ping,LI Zhifeng,LIU Dehong,WU Ying. Hydrothermal Synthesis and Photocatalytic Activity of CuO/ZnO Composite Photocatalyst. Chinese Journal of Materials Research, 2019, 33(10): 728-734.

Download:  HTML  PDF(4745KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanocomposites of CuO/ZnO were synthesized with cetyltrimethylammonium bromide as a growth regulator by one-step hydrothermal method. The catalyst was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), fluorescence spectrometer (FL) and UV-Vis spectrometer (UV-Vis). The photocatalytic effect of the composite photocatalyst with different ratios of CuO to ZnO on the degradation efficiency of methyl orange under ultraviolet light irradiation, and the cyclic stability of the composite photocatalyst were investigated. The results show that CuO/ZnO photocatalysts are mainly composed of CuO nanoparticles and ZnO nanosheets. The proper amount of CuO can effectively adjust the light absorption performance of ZnO and enhance the efficiency of ultraviolet photocatalysis. Excess CuO (?7%) has inhibitory effect on ZnO ultraviolet catalytic efficiency. CuO/ZnO has good stability in the photocatalytic process.

Key words:  composites      CuO/ZnO      photocatalysis      methyl orange     
Received:  11 March 2019     
ZTFLH:  O644  
Fund: National Natural Science Foundation of China(53173104);Jiangxi Science and Technology Project(20141BBE50019);Jiangxi Provincial Department of Education Project(GJJ160602)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.146     OR     https://www.cjmr.org/EN/Y2019/V33/I10/728

Fig.1  XRD patterns of pure ZnO, CuO/ZnOand pure CuO powers
Fig.2  SEM images of 5%CuO/ZnO (a, b) and corresponding EDS elemental mapping images (c, d)
Fig.3  Blank experiment and Degradation profiles of MO with different photocatalysts under UV light irradiation (a). The corresponding kinetic linear fitting curves (b)
Fig.4  UV-vis absorption spectra of CuO, ZnO and CuO/ZnO (a). plots of the (αhν)2 vs photon energy () for ZnO and CuO/ZnO (b)
Fig.5  Cycling photodegradation experiments for the 5%CuO/ZnO
Fig.6  Photoluminescence spectra of pure ZnO and 5%CuO/ZnO
Fig.7  Complete XPS spectra of 5%CuO/ZnO (a). High-resolution XPS spectra of: (b) Zn 2p, (c) Cu 2p, and (d) O 1s for CuO/ZnO composite, and CuO
Fig.8  Photocatalytic mechanism diagram of CuO/ZnO composite photocatalyst
[1] Zhu L Y, Li H, Liu Z ,et al. Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity [J]. The Journal of Physical Chemistry C, 2018, 122(17): 9531
[2] Zhu M, Zhai C, Qiu L ,et al. New method to synthesize S-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3123
[3] Cai J B, Wu X Q, Li S ,et al. Synthesis of TiO2@WO3/Au nanocomposite hollow spheres with controllable size and high visible-light-driven photocatalytic activity [J]. Acs Sustainable Chemistry & Engineering, 2016, 4(3): 1581
[4] Luo J, Zhao A T. Synthesis and photocatalytic properties of cucuribit[6] uril-CdS composite photocatalyst [J]. Journal of the Chinese Ceramic Society, 2017, 45(1): 83
[4] 罗 娟, 赵安婷. 六元瓜环-CdS复合光催化剂的合成及其光催化性能 [J]. 硅酸盐学报, 2017, 45(1): 83
[5] Chen Y, Zhang P, Shang Y H, et al. Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio [J]. Chinese Journal of Materials Research, 2017, 31(8): 61
[5] 陈 燕, 张 萍, 尚永辉等. 不同纵横比 ZnO 纳米锥的可控合成及其光催化性能 [J]. 材料研究学报, 2017, 31(8): 61
[6] Zhu S, Chen X, Zuo F,et al. Controllable synthesis of ZnO nanograss with different morphologies and enhanced performance in dye-sensitized solar cells [J]. Journal of Solid State Chemistry, 2013, 197(1): 69
[7] Fang X M, Zeng Z, Gao S Yet al. Low-temperature preparation and photocatalytic activity of eco-friendly nanocone forest-like arrays of ZnO [J]. Chinese Journal of Materials Research, 2018, 32(12): 945
[7] 方向明, 曾 值, 高世勇等. ZnO纳米锥丛林阵列的低温制备和光催化性能 [J]. 材料研究学报, 2018, 32(12): 945
[8] Tripathy N, Ahmad R, H Kuket al. Rapid methyl orange degradation using porous ZnO spheres photocatalyst [J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 161: 312
[9] Huang N, Shu J, Wang Zet al. One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation [J]. Journal of Alloys & Compounds, 2015, 648: 919
[10] Ba-Abbad M M, Kadhum A A, Mohamad A B ,et al. Visible light photocatalytic activity of Fe(3+)-doped ZnO nanoparticle prepared via sol-gel technique [J]. Chemosphere, 2013, 91(11): 1604
[11] Cerrato E, Gionco C, Berruti I ,et al. Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment [J]. Journal of Solid State Chemistry, 2018, 264: 42
[12] Zong X, Sun C, Yu H ,et al. Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light [J]. Journal of Physical Chemistry C, 2013, 117(10): 4937
[13] Li R, Yu L M, Yan X F, et al. Morphology-controlled preparation and photocatalytic properties of Cu2O/ZnO microstructures [J]. Chemical Journal of Chinese Universities, 2017, 38(2): 267
[13] 李 如, 于良民, 闫雪峰等. Cu2O/ZnO的形貌可控制备及光催化性能 [J]. 高等学校化学学报, 2017, 38(2): 267
[14] Han Z Y, Li Y J, Lin X ,et al. Preparation and photoelectrocatalytic performance of Fe2O3/ZnO composite electrode loading on conductive glass [J]. Chemical Journal of Chinese Universities, 2018, 39(4): 771
[14] 韩志英, 李佑稷, 林 晓等. 导电玻璃负载Fe2O3/ZnO 复合光电极的制备及光电催化性能 [J]. 高等学校化学学报, 2018, 39(4): 771
[15] He X, Liu H R, Dong H L, et al. Synthesis and photocatalytic properties of ZnO/In2O3 heteronanostructures [J]. Journal of Inorganic Materials, 2014, 29(3): 264
[15] 何 霞, 刘海瑞, 董海亮等. ZnO/In2O3纳米异质结的合成及其光催化性能的研究 [J]. 无机材料学报, 2014, 29(3): 264
[16] Liu Z L, Deng J C, Deng J J ,et al. Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method [J]. Materials Science & Engineering B, 2008, 150(2): 99
[17] Asahi R, Morikawa T, Ohwaki T ,et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(5528): 269
[18] Hameed A, Gombac V, Montini T ,et al. Synthesis, characterization and photocatalytic activity of NiO-Bi2O3 nanocomposites [J]. Chemical Physics Letters, 2009, 472(4-6): 212
[19] Yu J J, Liao B, Zhang X ,et al. Fabrication of CuO nanowires on copper foams by thermal oxidation and investigation of their photocatalytic properties [J]. Chinese Journal of Rare Metals, 2016, 40(10): 1021
[19] 于晶晶, 廖 斌, 张 旭等. 热氧化法在泡沫铜上制备 CuO 纳米线及其光催化性能研究 [J]. 稀有金属, 2016, 40(10): 1021
[20] Li G., Dimitrijevic N.M., Chen L. ,et al. Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites [J]. Journal of Physical Chemistry C, 2008, 112(48): 19040
[21] Zhang J, Chen T, Yu J ,et al. Enhanced photocatalytic activity of flowerlike CuO-ZnO nanocomposites synthesized by one-step hydrothermal method [J]. Journal of Materials Science Materials in Electronics, 2016, 27(10): 1
[22] Mansournia M, Ghaderi L. CuO@ZnO core-shell nanocomposites: Novel hydrothermal synthesis and enhancement in photocatalytic property [J]. Journal of Alloys and Compounds, 2016: S0925838816326676.
[23] Hui F, Yanxia G, Tong W ,et al. Biomimetic synthesis of urchin-like CuO/ZnO nanocomposite with excellent photocatalytic activity [J]. New Journal of Chemistry, 2018, 42: 12779
[24] Lu H B, Li H, Liao L ,et al. Low-temperature synthesis and photocatalytic properties of ZnO nanotubes by thermal oxidation of Zn nanowires [J]. Nanotechnology, 2008, 19(4): 045605
[25] Butler M A, Ginley D S, Eibschutz M. Photoelectrolysis with YFeO3 electrodes [J]. Journal of Applied Physics, 1977, 48(7): 3070
[26] Mohamed Reda G, Fan H, Tian H. Room-temperature solid state synthesis of Co3O4/ZnO p-n heterostructure and its photocatalytic activity [J]. Advanced Powder Technology, 2017, 28(3): 953
[27] Mageshwari K, Nataraj D, Pal T ,et al. Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method [J]. Journal of Alloys and Compounds, 2015, 625: 362
[28] Zheng J, Jiang Z Y, Kuang Q, et al. Shape-controlled fabrication of porous ZnO architectures and their photocatalytic properties [J]. Journal of Solid State Chemistry, 2009, 182(1): 115
[29] Dong G, Du B, Liu L,et al. Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light [J]. Applied Surface Science, 2017, 399: 86
[30] Xie Y, Xing R, Li Q ,et al. Three-dimensional ordered ZnO-CuO inverse opals toward low concentration acetone detection for exhaled breath sensing [J]. Sensors and Actuators B: Chemical, 2015, 211: 255
[31] Qi L X, Fei F Q, Li L G ,et al. Syntheses of ZnO nano-arrays and spike-shaped CuO/ZnO heterostructure [J]. Acta Phys. Chim. Sin., 2015, 31(4): 783
[32] Sungmook J, Kijung Y. Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications [J]. Chemical Communications, 2011, 47(9): 2643
[33] Li J, Wang J, Huang L, et al. Photoelectrocatalytic degradation of methyl orange over mesoporous film electrodes [J]. Photochemical and Photobiological Sciences, 2010, 9: 39
[1] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[2] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[3] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[4] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[5] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[6] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[7] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[9] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[11] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[12] LI Yuanyuan, ZENG Hanlu, PU Hongzheng, JIANG Mingzhu, WANG Zhongming, YANG Yimeng, GONG Xiangnan. Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3[J]. 材料研究学报, 2022, 36(3): 206-212.
[13] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[14] JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie. Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials[J]. 材料研究学报, 2022, 36(11): 862-870.
[15] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
No Suggested Reading articles found!