Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (1): 1-8    DOI: 10.11901/1005.3093.2018.289
ARTICLES Current Issue | Archive | Adv Search |
Effect of Heat Treatment on the Microstructure and Mechanical Property of Vacuum Die-casting NZ30K Mg-alloy
Jie WEI1,Qudong WANG1,2(),Bing YE1,2,Haiyan JIANG1,2,Wenjiang DING1,2
1. National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2. Shanghai Innovation Institute for Materials, Shanghai 200240, China
Cite this article: 

Jie WEI,Qudong WANG,Bing YE,Haiyan JIANG,Wenjiang DING. Effect of Heat Treatment on the Microstructure and Mechanical Property of Vacuum Die-casting NZ30K Mg-alloy. Chinese Journal of Materials Research, 2019, 33(1): 1-8.

Download:  HTML  PDF(16233KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of heat treatment on the microstructure and mechanical property of vacuum die-casting (VDC) NZ30K Mg-alloy were systematically investigated by means of optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), hardness test and tensile test. The results show that the as-cast alloy is composed of a surface zone and a central region. Fine α-Mg matrix and Mg12Nd eutectic compounds were observed in the surface zone and the central region, besides, coarser externally solidified crystals (ESCs) existed in the central region. During solution treatment the grain growth of the central region was more significant than that of the surface zone, which can be explained by the grain growth model of unhomogenized structure, i.e.v=M0 exp (-Q/RT) A (1/D1-1/D2). The optimized heat treatment of the alloy was 540oC×6 h+200oC×8 h. Compared with the as-cast alloy, the ultimate tensile strength and yield strength of the peak-aged alloy enhanced from 186.0±1.5 MPa to 223.6±4.1 MPa and from 131±2.5 MPa to 172.8±2.9 MPa respectively, with a decreased elongation (from 6.6±0.4 % to 4.2±0.3%). The strength enhancement may be mainly attributed to the plate-shaped β" precipitates, which could block the dislocation motion effectively. The fractography of surface zone exhibited ductile fracture pattern at different states. However, the fractography of central region showed quasi-cleavage, cleavage and quasi-cleavage fracture patterns for the as-cast, as-solutioned and peak-aged alloys, respectively.

Key words:  metallic materials      NZ30K alloy      solution and aging treatment      microstructure      grain growth model      mechanical property     
Received:  24 April 2018     
ZTFLH:  TG113  
Fund: National Key Research and Development Program of China(2016YFB0301001);and the 111 Project(B16032)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.289     OR     https://www.cjmr.org/EN/Y2019/V33/I1/1

Fig.1  Schematic illustrations of the tensile test bar and the microstructure observation plane

Casting temperature

/℃

Mold temperature

/℃

Slow shot speed

/m·s-1

High shot speed

/m·s-1

Boost pressure

/MPa

Vacuum pressure

/KPa

7201200.22.013.75
Table1  Process parameters of vacuum die casting
NdZnZrMg
2.550.230.48Bal.
Table 2  Chemical composition of NZ30K alloy (mass frac-tion, %)
Fig.2  Macro-structure of as-cast alloy
Fig.3  SEM images of as-cast NZ30K alloy in (a) the surface layer and (b) the central region, with the inserted images exhibiting the corresponding grain size distribution and (c, d) giving the EDS analysis of Point 1 and Point 2
Fig.4  OM images of as-cast NZ30K alloy and after solid solution treatment at different temperature (a) as-cast, (b) 490℃×6 h, (c) 510℃×6 h, (d) 540℃×6 h
Fig.5  Curves of the grain size (a), the area friction of eutectic with different solution process (b)
Fig.6  Models of grain growth of the surface layer (a) and the central region (b), where P is the boundary driving force
Fig.7  Hardness evolution as a function of aging time during isothermal aging at 200℃ after different solution treatments (a) 510℃×6 h and (b) 540℃×6 h
Fig.8  SEM images of (a) the surface layer and (b) the central region of peak-aged NZ30K alloy
Fig.9  Mechanical properties (RT) of Vacuum die casting alloy at different heat treatment states
Fig.10  fractographies of as-cast state (a), as-solutioned state (b) and peak-aged state (c) alloys
1 FriedrichH., SchumannS.. Research for a “new age of magnesium” in the automotive industry [J]. Journal of Materials Processing Technology, 2001, 117(3): 276
2 FuP H, PengL M, JiangH Y, et al. Tensile properties of high strength cast Mg alloys at room temperature:A review [J]. China Foundry, 2014, 11(4): 227
3 NieJ F, MuddleB. C.. Precipitation in magnesium alloy WE54 during isothermal ageing at 250℃ [J]. Scripta Materialia,1999, 40(10): 1089
4 RzychońT, MichalskaJ, Kie BusA. Effect of heat treatment on corrosion resistance of WE54 alloy [J]. Journal of Achievements in Materials & Manufacturing Engineering, 2007, 20(1-2): 1049
5 LiS Y, LiD J, ZengX Q, et al. Study on Microstructure and Mechanical Properties of Mg-3Nd-0.2Zn-0.4Zr Alloy Processed by Die-Casting [J]. Foundry, 2014(12): 1226
5 李胜勇, 李德江, 曾小勤等. 压铸Mg-3Nd-0.2Zn-0.4Zr合金的组织和力学性能研究 [J]. 铸造, 2014, (12): 1226)
6 FuP H, PengL M, JiangH Y, et al. Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy [J]. Materials Science and Engineering: A, 2008, 486(1-2): 183
7 FuP H, PengL M, JiangH Y, et al. Chemical composition optimization of gravity cast Mg-yNd-xZn-Zr alloy [J]. Materials Science and Engineering: A, 2008, 496(1-2): 177
8 WilsonRobert, BettlesC. J., C. MuddleBarry, et al. Precipitation hardening in Mg-3wt% Nd (-Zn) casting alloys [J]. Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland,2003, 419: 267
9 LuoA A. Magnesium casting technology for structural applications [J]. Journal of Magnesium and Alloys, 2013, 1(1): 2
10 WangX J, ZhuS M, EastonM A, et al. Heat treatment of vacuum high pressure die cast magnesium alloy AZ91 [J]. International Journal of Cast Metals Research, 2014, 27(3): 161
11 HuB, XiongS M, MasayukiM, et al. ShingoIkeda, Relationship Between Porosity Distribution and Mechanical Properties of Vacuum Die Casting AM50 Magnesium Alloy [J]. Foundry,2007, 28(12): 1579
11 胡泊, 熊守美, 村上正幸等. AZ91D镁合金真空压铸力学性能研究 [J]. 铸造技术, 2007, 28(12): 1579)
12 HuB, XiongS M, MasayukiM, et al. ShingoIkeda, Effects of Vacuum Die Casting Processing Parameters on Mechanical Properties of AM50 Magnesium Alloy [J]. Special casting & nonferrous alloys,2009, 29(12): 1120
12 胡泊, 熊守美, 村上正幸等. 真空压铸工艺参数对AM50镁合金力学性能的影响规律 [J]. 特种铸造及有色金属, 2009, 29(12): 1120)
13 WeiJ, HuangG H, YinD D, et al. Effects of ECAP and Annealing Treatment on the Microstructure and Mechanical Properties of Mg-1Y(wt .%) Binary Alloy [J]. Metals, 2017, 7(4): 119
14 LiX B, XiongS M, PengZ. Characterization of the Grain Structures in Vacuum-Assist High- Pressure Die Casting AM60B Alloy [J]. Acta Metallurgica Sinica (English Letters), 2016, 29(7): 619
15 FrederickJ H, MaxHatherly. Recrystallization and related annealing phenomena [M]. (Amsterdam, The Netherlands, Elsevier, 2004) p.219~224
16 HonmaT., OhkuboT., KamadoS., et al. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys [J]. Acta Materialia, 2007, 55(12): 4137
17 HeS M, ZengX Q, PengL M, et al. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy [J]. Journal of Alloys and Compounds, 2007, 427(1-2): 316
18 SrinivasanA, PillaiU T S, PaiB C. Microstructure and mechanical properties of Si and Sb added AZ91 magnesium alloy [J]. Metallurgical and Materials Transactions A, 2005, 8(36): 2235
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!