Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (6): 455-463    DOI: 10.11901/1005.3093.2017.631
ARTICLES Current Issue | Archive | Adv Search |
Effect of Microstructure and Texture on Room Temperature Strength of Ti60 Ti-Alloy Plate
Wenyuan LI1,2, Jianrong LIU1, Zhiyong CHEN1(), Zibo ZHAO1, Qingjiang WANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

Wenyuan LI, Jianrong LIU, Zhiyong CHEN, Zibo ZHAO, Qingjiang WANG. Effect of Microstructure and Texture on Room Temperature Strength of Ti60 Ti-Alloy Plate. Chinese Journal of Materials Research, 2018, 32(6): 455-463.

Download:  HTML  PDF(7209KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution of microstructure and texture at different temperatures and its effect on room temperature strength in Ti60 Ti-alloy plates were investigated in the present work. There was no perceivable change of the microstructure or texture after heat treatment at 700?C compared with those of the as-rolled plate. In α+β and β phase regions equiaxed primary α grains shrank and ultimately transformed to secondary α phase, and T-type texture was replaced by a new type of texture with temperature increasing. It was indicated that whether new texture formed or not was significantly affected by the percentage of primary α phase during αβα phase transformation: by high percentage, the primary α phase strongly induced the secondary α phase to be with the similar orientation, thereby nearly no change of the texture; by low or zero percentage, part of the formed secondary α phase with new orientation, which was hardly affected by the primary α phase and was inferred as results of α variants selection dominated by texture of β grains formed during rolling at high temperature. Room temperature strength was mainly affected by the substructure: heat treatment in the α phase region didn't eliminate the substructure, the room temperature strength is comparable to that of the as-rolled plates; heat treatment in/above α+β phase field eliminated the substructure, resulting in large reduction of room temperature strength compared with the as-rolled plates. After eliminating the substructure, the room temperature strength was impacted by the microstructure: similar room temperature strength of plates heat treated in low and high α+β phase region is related to the limited effect of the percentage of equiaxed primary α phase on the strength; the room temperature strength decreased after heat treatment in β phase region, and the decrease amplitude in certain direction was remarkably affected by texture. The degree of room temperature anisotropy was influenced by the texture and substructure: higher strength exhibited along the crystallographic c axis; while the substructure weakened the influence of the texture on anisotropy, resulting in stronger anisotropy in plates heat treated in/above α+β phase region.

Key words:  metallic materials      Ti60 Ti-alloy plate      heat treatment      microstructure      texture      room temperature strength      anisotropy     
Received:  22 October 2017     
ZTFLH:  TG142.25  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.631     OR     https://www.cjmr.org/EN/Y2018/V32/I6/455

Fig.1  Microstructures of as-rolled and heat treated Ti60 plates (a) as-rolled, (b) HT-α, (c) HT-αβL, (d) HT-αβH, (e) HT-β
Fig.2  (0002) pole figures of as-rolled and heat treated Ti60 plates (a) as-rolled, (b) HT-α, (c) HT-αβL, (d) HT-αβH, (e) HT-β
Fig.3  Tensile properties at room temperature of Ti60 plates after different heat treatment (a) Yield stress, (b) Ultimate tensile stress, (c) YSTD-YSRD, (d) UTSTD-UTSRD
Fig.4  EBSD analysis results of HT-αβ and HT-αβH plates (a) FSD map of HT-αβL plate, (b) IPF map of HT-αβL plate, (c) FSD map of HT-αβH plate, (d) IPF map of HT-αβH plate
Fig.5  LM results of Ti60 titanium alloy plates containing T-type textures (a) as-rolled, (b) HT-α, (c) HT-αβL, (d) HT-αβH
[1] Boyer R R.An overview on the use of titanium in the aerospace industry[J]. Mater. Sci. Eng., 1996, 213A: 103
[2] Banerjee D, Williams J C.Perspectives on titanium science and technology[J]. Acta Mater., 2013, 61: 844
[3] Wang Q J, Liu J R, Yang R.High temperature titanium alloys: status and perspective[J]. J. Aeronaut. Mater., 2014, 34(4): 1王清江, 刘建荣, 杨锐. 高温钛合金的现状与前景[J]. 航空材料学报, 2014, 34(4): 1
[4] Jin H X, Wei K X, Li J M, et al.Research development of titanium alloy in aerospace industry[J]. Chin. J. Nonfer. Metals, 2015, 25: 280金和喜, 魏克湘, 李建明等. 航空用钛合金研究进展[J]. 中国有色金属学报, 2015, 25: 280
[5] Li M Q, Lin Y Y.Grain refinement in near alpha Ti60 titanium alloy by the thermohydrogenation treatment[J]. Int. J. Hydrogen Energy, 2007, 32: 626
[6] Jia W J, Zeng W D, Zhou Y G, et al.High-temperature deformation behavior of Ti60 titanium alloy[J]. Mater. Sci. Eng., 2011, 528A: 4068
[7] Sun F, Li J S, Kou H C, et al.β phase transformation kinetics in Ti60 alloy during continuous cooling[J]. J. Alloy. Compd., 2013, 576: 108
[8] Peng W W, Zeng W D, Wang Q J, et al.Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models[J]. Mater. Des., 2013, 51: 195
[9] Yang L N, Liu J R, Tan J, et al.Dwell and normal cyclic fatigue behaviours of Ti60 alloy[J]. J. Mater. Sci. Technol., 2014, 30: 706
[10] Jia W J, Zeng W D, Yu H Q.Effect of aging on the tensile properties and microstructures of a near-alpha titanium alloy[J]. Mater. Des., 2014, 58: 108
[11] Zhao Z B, Wang Q J, Liu J R, et al.Texture of Ti60 alloy precision bars and its effect on tensile properties[J]. Acta Metall. Sin., 2015, 51: 561赵子博, 王清江, 刘建荣等. Ti60合金棒材中的织构及其对拉伸性能的影响[J]. 金属学报, 2015, 51: 561
[12] Zhao L, Liu J R, Wang Q J, et al.Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy[J]. Chin. J. Mater. Res., 2009, 23: 1赵亮, 刘建荣, 王清江等. 析出相对Ti60钛合金蠕变和持久性能的影响[J]. 材料研究学报, 2009, 23: 1
[13] Wang Y N, Huang J C.Texture analysis in hexagonal materials[J]. Mater. Chem. Phys., 2003, 81: 11
[14] Williams D N, Eppelsheimer D S.Origin of the deformation textures of titanium[J]. Nature, 1952, 170: 146
[15] Dillamore I L, Roberts W T.Preferred orientation in wrought and annealed metals[J]. Metall. Rev., 1965, 10: 271
[16] Frederick S F, Lenning G A.Producing basal textured Ti-6Al-4V sheet[J]. Metall. Trans., 1975, 6B: 601
[17] Green J A S. Influence of texture on the corrosion and film formation of a titanium single crystal[J]. Corrosion, 1974, 30: 175
[18] Anderson A J, Thompson R B, Cook C S.Ultrasonic measurement of the Kearns texture factors in zircaloy, zirconium, and titanium[J]. Metall. Mater. Trans., 1999, 30A: 1981
[19] Leyens C, Peters M.Titanium and Titanium Alloys[M]. Weinheim: Wiley, 2003
[20] Bache M R, Evans W J. Impact of texture on mechanical properties in an advanced titanium alloy [J]. Mater. Sci. Eng., 2001, 319-321A: 409
[21] Bache M R, Evans W J, Suddell B, et al.The effects of texture in titanium alloys for engineering components under fatigue[J]. Int. J. Fatigue, 2001, 23(Suppl.): 153
[22] Bowen A W.The influence of crystallographic orientation on the fracture toughness of strongly textured Ti-6Al-4V[J]. Acta Metall., 1978, 26: 1423
[23] Tchorzewski R M, Hutchinson W B.Effect of texture on fatigue crack path in titanium-6Al-4V[J]. Met. Sci., 1978, 12: 109
[24] Li W Y, Chen Z Y, Liu J R, et al.Effect of texture on anisotropy at 600℃ in a near-α titanium alloy Ti60 plate[J]. Mater. Sci. Eng., 2017, 688A: 322
[25] Yang L N.Dwell fatigue behavior and damage mechanism of Ti60 alloy [D]. Beijing: University of Chinese Academy of Sciences, 2013杨丽娜. Ti60合金保载疲劳行为及损伤机制研究 [D]. 北京: 中国科学院大学, 2013
[26] Cayron C.Importance of the α→β transformation in the variant selection mechanisms of thermomechanically processed titanium alloys[J]. Scr. Mater., 2008, 59: 570
[27] Zhao Z B, Wang Q J, Hu Q M, et al.Effect of β (110) texture intensity on α-variant selection and microstructure morphology during βα phase transformation in near α titanium alloy[J]. Acta Mater., 2007, 126: 372
[28] Lee E, Banerjee R, Kar S, et al.Selection of α variants during microstructural evolution in α/β titanium alloys[J]. Philos. Mag., 2007, 87: 3615
[29] Zong Y Y, Xue K M, Shan D B, et al.Effect of heat treatment on the microstructure and mechanical properties of BT14 titanium alloy[J]. Mater. Sci. Technol., 2004, 12: 546宗影影, 薛克敏, 单德彬等. 热处理对BT14钛合金显微组织和力学性能的影响[J]. 材料科学与工艺, 2004, 12: 546
[30] Chen X W, Zhang S H, Wang Z T, et al.Effects of heat treatment conditions on microstructure and mechanical properties of TC11 titanium alloy[J]. Heat Treat. Met., 2007, 32(10): 48陈学伟, 张士宏, 王忠堂等. 热处理工艺对TC11钛合金组织及性能的影响[J]. 金属热处理, 2007, 32(10): 48
[31] Wang Z H, Xia C Q, Peng X M, et al.Effect of heat treatment on microstructure and mechanical properties of Ti62421s high temperature titanium alloy[J]. Chin. J. Nonfer. Met., 2010, 20: 2298王志辉, 夏长清, 彭小敏等. 热处理工艺对Ti62421s高温钛合金组织与力学性能的影响[J]. 中国有色金属学报, 2010, 20: 2298
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!