Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (6): 449-454    DOI: 10.11901/1005.3093.2017.611
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Ce-doped Cobalt Ferrite
Hongxia JING1,2(), Mingxing GAO2, Xingmei WANG2, Wangjun PEI3, Weizhou JIAO1
1 Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan 030051, China
2 Department of Chemistry, School of Science, North University of China, Taiyuan 030051, China
3 Branch Factory of Surface Treatment, Jinxi Industries Group, Taiyuan 030027, China
Cite this article: 

Hongxia JING, Mingxing GAO, Xingmei WANG, Wangjun PEI, Weizhou JIAO. Preparation and Properties of Ce-doped Cobalt Ferrite. Chinese Journal of Materials Research, 2018, 32(6): 449-454.

Download:  HTML  PDF(1669KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanostructure of CoFe2-xCexO4(x=0,0.1,0.2,0.3,0.4) was synthesized by sol-gel coupled with self-propagating method. The prepared nanostructures were characterized by means of XRD, EDS, FT-IR, SEM, TEM and PNA in terms of phase constituents, morphology and electromagnetic properties. Peculiarly, the influence of the amount of Ce3+ on absorbing properties was investigated. Results show that the prepared CoFe2O4 has spinel structure. The average diameter of particles is about 70 nm. The microwave absorption ability of the CoFe2-xCexO4 is greatly improved in the frequency domain of 0~6 GHz, in comparison to the pure CoFe2O4. When the Ce3+ content is 0.3 it has the best wave-absorbing property at 5030 MHz, of which the maximum absorption can reach -27.6 dB and within a bandwidth of 1.6 GHz, its absorption is above -5 dB.

Key words:  inorganic nonmetallic materials      cobalt ferrite      wave-absorbing properties      nanoparticles      doping     
Received:  17 October 2017     
ZTFLH:  TB331  
Fund: Supported by National Natural Science Foundation of China (Nos. 20871108 & 51272239) and Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering (No. CZL201502)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.611     OR     https://www.cjmr.org/EN/Y2018/V32/I6/449

Fig.1  XRD patterns of diferent samples (a) CoFe2O4, (b) CoFe1.7Ce0.3O4
Fig.2  EDS spectrum of different samples surface (a) CoFe2O4, (b) CoFe1.7Ce0.3O4
Samples ωFe ωO ωCo ωCe
CoFe2O4 47.56 27.27 25.12 0
CoFe1.7Ce0.3O4 36.53 24.63 22.66 16.17
Table 1  Element content analysis of different samples
Fig.3  Infrared spectra of different samples (a) CoFe2O4, (b) CoFe2O4 xerogel
Fig.4  TEM patterns of different samples (a) CoFe1.7Ce0.3O4, (b) CoFe2O4
Fig.5  Complex permeability versus frequency for the CoFe2-xCexO4(x=0, 0.1, 0.2, 0.3, 0.4)
Fig.6  Complex permittivity versus frequency for the CoFe2-xCexO4(x=0, 0.1, 0.2, 0.3, 0.4)
Fig.7  Absorbing curves of CoFe2-xCexO4(x=0, 0.1, 0.2, 0.3, 0.4)
x
value
Peak poit/MHz Absorbing peak/dB -5 dB bandwidth/MHz
0 5830 -8.34 976
0.1 5430 -11.2 614
0.2 5430 -20.7 981
0.3 5030 -27.6 1594
0.4 5030 -15.1 716
Table 2  Wave-absorbing properties parameters of the CoFe2-x-CexO4
[1] Ren X H, Xu G L.Electromagnetic and microwave absorbing properties of NiCoZn-ferrites doped with La3+[J]. J. Magn. Magn. Mater., 2014, 354: 44
[2] Chen B Y, Chen D, Kang Z T, et al.Preparation and microwave absorption properties of Ni-Co nanoferrites[J]. J. Alloy. Compd., 2015, 618: 222
[3] Bueno A R, Gregori M L, Nóbrega M C S. Microwave-absorbing properties of Ni0.50-xZn0.50-xMe2xFe2O4 (Me=Cu, Mn, Mg) ferrite-wax composite in X-band frequencies[J]. J. Magn. Magn. Mater., 2008, 320: 864
[4] Tadjarodi A, Rahimi R, Imani M, et al.Synthesis, characterization and microwave absorbing properties of the novel ferrite nanocomposites[J]. J. Alloy. Compd., 2012, 542: 43
[5] Zhang Y P, Song P X, Song X H, et al.Synthesis and magnetic properties of CoFe2O4 nanoparticles[J]. J. Synth. Cryst., 2014, 43: 3118张月萍, 宋平新, 宋小会等. CoFe2O4纳米颗粒的制备及其磁学性能[J]. 人工晶体学报, 2014, 43: 3118
[6] Goldstein J I, Newbury D E, Echlin P, et al, translated by Zhang Q M, Xu P. Scanning Electron Microscopy and X-ray Microanalysis [M]. Tianjin: Nankai University Press, 1988Goldstein J I, Newbury D E, Echlin P等著, 张清敏, 徐濮译. 扫描电子显微镜和X射线微区分析 [M]. 天津: 南开大学出版社, 1988
[7] Mali A, Ataie A.Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol-gel combustion route[J]. Scr. Mater., 2005, 53: 1065
[8] Xu J J.Study on the microstructure and electromagnetic properties of rare-earth substituted hexagonal ferrites [D]. Changchun: Jilin University, 2011徐吉静. 稀土取代六方晶系铁氧体的微观结构和电磁性能研究 [D]. 长春: 吉林大学, 2011
[9] Sun Y F, Li G D, Zhang C Z, et al.Synthesis and microwave absorbing properties of Z type Hexaferrite Ce-doped Ba3-xCexCo2Fe24O41[J]. J. Chin. Rare Earth Soc., 2006, 24(suppl.): 152孙银凤, 李国栋, 张常在等. 稀土Z型铁氧体Ba3-xCexCo2Fe24O41的制备及其微波吸收性能[J]. 中国稀土学报, 2006, 24(增刊): 152
[10] Xu J J, Yang C M, Zou H F, et al.Electromagnetic and microwave absorbing properties of Co2Z-type hexaferrites doped with La3+[J]. J. Magn. Magn. Mater., 2009, 321: 3231
[11] Deng L W, Ding L, Zhou K S, et al.Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+[J]. J. Magn. Magn. Mater., 2011, 323: 1895
[12] Chen N, Mu G H, Pan X F, et al.Microwave absorption properties of SrFe12O19/ZnFe2O4 composite powders[J]. Mater. Sci. Eng., 2007, 139B: 256
[13] Yun Y H, Liu Y L, Zhang W.Study on microwave absorption properties of nanometer Ni0.5Zn0.5CexFe2-xO4 ferrite by chemistry co-precipitation method[J]. J. Mater. Eng., 2008, 36(3): 58云月厚, 刘永林, 张伟. 化学共沉淀法制备的纳米Ni0.5Zn0.5CexFe2-x-O4铁氧体微波吸收特性研究[J]. 材料工程, 2008, 36(3): 58
[1] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[2] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[3] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[4] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[5] LIU Jialiang, XU Dongwei, CHEN Ping. Preparation and Microwave Absorption Properties of Magnetic Porous rGO@Co/CoO Composites[J]. 材料研究学报, 2022, 36(5): 332-342.
[6] TAN Chong, LI Yuanyuan, WANG Huanhuan, LI Junsheng, XIA Zhi, ZUO Jinlong, YAO Lin. Preparation of g-C3N4/Ag/TiO2 NTs and Photocatalytic Degradation of Ceftazidine[J]. 材料研究学报, 2022, 36(5): 392-400.
[7] LI Yuanyuan, ZENG Hanlu, PU Hongzheng, JIANG Mingzhu, WANG Zhongming, YANG Yimeng, GONG Xiangnan. Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3[J]. 材料研究学报, 2022, 36(3): 206-212.
[8] JI Jinpeng, LI Guohui, GENG Fengxia. Mn-doped Co-Al LDHs and its Potential Use for Overall Water Splitting[J]. 材料研究学报, 2022, 36(2): 140-146.
[9] OUYANG Jie, LI Xue, ZHU Yuxin, CAO Fu, CUI Yanjuan. Enhanced Photocatalytic Hydrogen Production and Carbon Dioxide Reduction[J]. 材料研究学报, 2022, 36(2): 152-160.
[10] JING Qian, CAO Han, LIU Fangyuan, XI Huijuan, LI Chaoxiang, SHAO Yunhang, CAO Meiwen, XIA Yongqing, WANG Shengjie. Preparation and Photocatalytic Property of Iron-doped Titanium Dioxide Nanomaterials[J]. 材料研究学报, 2022, 36(11): 862-870.
[11] ZENG Renfen, JIANG Xiangping, CHEN Chao, HUANG Xiaokun, NIE Xin, YE Fen. Effects of Er3+-doping on Performance of Bi3Ti1.5W0.5O9-Bi4Ti3O12 Intergrowth Lead-free Piezoceramics[J]. 材料研究学报, 2022, 36(10): 760-768.
[12] FENG Kai, L Guangzhe, L Bin. Synthesis and Upconversion Luminescence of Ultrafine (Lu0.5In0.5)2O3:Tm3+,Yb3+ Powders[J]. 材料研究学报, 2021, 35(8): 591-596.
[13] YANG Xiaogang, CUI Shihong, LI Bin, WANG Chuanjie, HAN Jiejia. Preparation and Corrosion Resistance of Graphene/Acetic Acid Doped Polyaniline[J]. 材料研究学报, 2021, 35(5): 357-363.
[14] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[15] CHENG Ting, DONG Pengyu, GAO Xin, MENG Chengqi, WANG Yan, CHEN Xiaowei, ZHANG Beibei, XI Xinguo. Synthesis and Visible-light-driven Photocatalytic Activity of CsTi2NbO7@N-doped TiO2 Hybrid Core-shell Structure[J]. 材料研究学报, 2021, 35(3): 221-230.
No Suggested Reading articles found!