Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (2): 90-96    DOI: 10.11901/1005.3093.2017.264
ARTICLES Current Issue | Archive | Adv Search |
Synthesis, Characterization and Compressive Elastic Modulus of Core/Shell Structured PS/MSiO2 Composite Particles
Yang CHEN1(), Changzhi ZUO1, Ailian CHEN2, Yayun WANG1
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
2 School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
Cite this article: 

Yang CHEN, Changzhi ZUO, Ailian CHEN, Yayun WANG. Synthesis, Characterization and Compressive Elastic Modulus of Core/Shell Structured PS/MSiO2 Composite Particles. Chinese Journal of Materials Research, 2018, 32(2): 90-96.

Download:  HTML  PDF(3207KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Firstly, polystyrene (PS) microspheres (ca. 260 nm) were surface-modified with polyvinylpyrrolidone (PVP) via a soap-free emulsion polymerization method. Then core-shell composites of PS/MSiO2 with PS as core and mesoporous silica as shell materials were prepared via a synergistic self-assembly process of PVP surfactants and cetyltrimethylammonium bromide micelles. The results indicated that the silica shells were about 60 nm in thickness with radial meso- channels. The specific surface area of the composites and the average pore size of silica meso-channels were 848 g/m2 and 2.54 nm, respectively. The compressive elastic moduli (E) of the individual composite particle were assessed by analyzing the force-displacement curves, measured by scanning probe microscopy, on the basis of the Hertz contact model. The fitted and calculated E values were 4.47±0.83 (Poisson's ratio=0.33) and 4.89±0.89 GPa (Poisson's ratio=0.2), respectively. These results suggest that the improvement of the elastic response of organic/inorganic composite particles may be ascribed to the presence of mesoporous shells, indicating a potential application in optimizing the structural design of novel non-rigid composite abrasives.

Key words:  composite      particle      core/shell structure      scanning probe microscope      compressive elastic modulus      Hertz model     
Received:  18 April 2017     
ZTFLH:  TB383  
Fund: Supported by National Natural Science Foundation of China (Nos. 51205032, 51405038 & 51575058)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.264     OR     https://www.cjmr.org/EN/Y2018/V32/I2/90

Fig.1  Low- (a) and high-resolution (b) SEM images of probe tip
Fig.3  XRD patterns of PS/MSiO2 composite particles
Fig.4  N2 adsorption-desorption isotherms and the corroding pore size distribution (inset) of composite particles
Fig.2  TEM and SEM images ofPS cores (a) and PS/MSiO2 composite particles(b-d)
Fig.5  AFM image (a) of composite particles deposited on a substrate and the force curve (b) recorded on an individual particle
Fig.6  Typical force-separation curve recorded on an individual particle
Fig.7  Fitting curve for E calculation using Hertz model
Samples Reduced Young's modulus/GPa Young's modulus/GPa R2 Mean Young's modulus /GPa
1 5.899 5.257 0.9972 4.47±0.83
2 5.875 5.236 0.9956
3 5.185 4.620 0.9624
4 4.282 3.816 0.9930
5 3.851 3.432 0.9708
Table 1  Calculated compressive elastic moduli (E) data of composite particles
[1] Krishnan M, Nalaskowski J W, Cook L M.Chemical mechanical planarization: slurry chemistry, materials, and mechanisms[J]. Chem. Rev., 2010, 110: 178
[2] Zhang Z Y, Wang B, Zhou P, et al.A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors[J]. Sci. Rep., 2016, 6: 22466
[3] Armini S, Vakarelski I U, Whelan C M, et al.Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy[J]. Langmuir, 2007, 23: 2007
[4] Armini S, Whelan C M, Moinpour M, et al.Copper CMP with composite polymer core-silica shell abrasives: a defectivity study[J]. J. Electrochem. Soc., 2009, 156: H18
[5] Chen A L, Zhang Z F, Li X Z, et al.Evaluation of oxide chemical mechanical polishing performance of polystyrene coated ceria hybrid abrasives[J]. J. Mater. Sci. Mater. Med., 2016, 27: 2919
[6] Chen Y, Li Z N, Miao N M.Polymethylmethacrylate (PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance[J]. Tribol. Int., 2015, 82: 211
[7] Chen A L, Mu W B, Chen Y.Compressive elastic moduli and polishing performance of non-rigid core/shell structured PS/SiO2 composite abrasives evaluated by AFM[J]. Appl. Surf. Sci., 2014, 290: 433
[8] Zhu L J, Teng L, Bai M S, et al.Experimental study of Zerodur glass polishing with core-shell structured PS/CeO2 composite abrasives[J]. Aviat. Precis. Manuf. Technol., 2014, 50(1): 1(朱良健, 滕霖, 白满社等. PS/CeO2核壳型复合磨粒的微晶玻璃抛光试验研究[J]. 航空精密制造技术, 2014, 50(1): 1
[9] Murata J, Ueno Y, Yodogawa K, et al.Polymer/CeO2-Fe3O4 multicomponent core-shell particles for high-efficiency magnetic-field-assisted polishing processes[J]. Int. J. Mach. Tools Manuf., 2016, 101: 28
[10] Jano? P, Ederer J, Pila?ová V, et al. Chemical mechanical glass polishing with cerium oxide: effect of selected physico-chemical characteristics on polishing efficiency [J]. Wear, 2016, 362-363: 114
[11] Murata J, Yodogawa K, Ban K.Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane-CeO2 core-shell particles[J]. Int. J. Mach. Tools Manuf., 2017, 114: 1
[12] Chen Y, Li Z F, Qin J W, et al.Monodispersed mesoporous silica (mSiO2) spheres as abrasives for improved chemical mechanical planarization performance[J]. J. Mater. Sci., 2016, 51: 5811
[13] Ran Z P, Sun Y, Chang B S, et al.Silica composite nanoparticles containing fluorescent solid core and mesoporous shell with different thickness as drug carrier[J]. J. Coll. Interf. Sci., 2013, 410: 94
[14] Mark J E.Polymer Data Handbook [M]. Oxford: Oxford University Press, 1999
[15] Jauffrèsa D, Yacou C, Verdier M, et al.Mechanical properties of hierarchical porous silica thin films: experimental characterization by nanoindentation and Finite Element modeling[J]. Microporous Mesoporous Mater., 2011, 140: 120
[16] Huang M X, Liu L, Wang S G, et al.Dendritic mesoporous silica nanospheres synthesized by a novel dual-templating micelle system for the preparation of functional nanomaterials[J]. Langmuir, 2017, 33: 519
[17] Brigo L, Scomparin E, Galuppo M, et al.Mesoporous silica sub-micron spheres as drug dissolution enhancers: Influence of drug and matrix chemistry on functionality and stability[J]. Mater. Sci. Eng., 2016, 59C: 585
[18] Blas H, Save M, Pasetto P, et al.Elaboration of monodisperse spherical hollow particles with ordered mesoporous silica shells via dual latex/surfactant templating: radial orientation of mesopore channels[J]. Langmuir, 2008, 24: 13132
[19] Guo D, Li J N, Xie G X, et al.Elastic properties of polystyrene nanospheres evaluated with atomic force microscopy: size effect and error analysis[J]. Langmuir, 2014, 30: 7206
[20] Chen Y, Qian C, Song Z T, et al.Measurement of compressive Young's modulus of polymer particles using atomic force microscopy[J]. Chin. J. Mater. Res., 2014, 28: 509(陈杨, 钱程, 宋志棠等. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量[J]. 材料研究学报, 2014, 28: 509
[21] Glaubitz M, Medvedev N, Pussak D, et al.A novel contact model for AFM indentation experiments on soft spherical cell-like particles[J]. Soft Matter, 2014, 10: 6732
[22] Touhami A, Nysten B, Dufrêne Y F.Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy[J]. Langmuir, 2003, 19: 4539
[23] Tsukruk V V, Shulha H, Zhai X W.Nanoscale stiffness of individual dendritic molecules and their aggregates[J]. Appl. Phys. Lett., 2003, 82: 907
[24] Chemin N, Klotz M, Rouessac V, et al.Mechanical properties of mesoporous silica thin films: effect of the surfactant removal processes[J]. Thin Solid Films, 2006, 495: 210
[25] Niu C, Wu X Q, Ren W, et al.Mechanical properties of low k SiO2 thin films templated by PVA[J]. Ceram. Int., 2015, 41(suppl.1): S365
[26] Chen Y, Mu W B, Lu J X.Determination of elastic modulus of composite PS/CeO2 core-shell microspheres by atomic force microscope[J]. Tribology, 2012, 32: 7(陈杨, 穆为彬, 陆锦霞. 核壳结构PS/CeO2复合微球弹性模量的AFM测定[J]. 摩擦学学报, 2012, 32: 7
[27] Chen A L, Qian C, Miao N M, et al.Effect of shell thickness on compressive elastic modulus of core-shell structured PS-SiO2 hybrid particles[J]. Acta Mater. Compos. Sin., 2015, 32: 1125(陈爱莲, 钱程, 苗乃明等. 壳层厚度对核-壳结构PS-SiO2杂化颗粒压缩弹性模量的影响[J]. 复合材料学报, 2015, 32: 1125
[28] Chen Y, Qin J W, Wang Y Y, et al.Core/shell composites with polystyrene cores and meso-silica shells as abrasives for improved chemical mechanical polishing behavior[J]. J. Nanopart. Res., 2015, 17: 363
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!