Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (2): 105-111    DOI: 10.11901/1005.3093.2017.223
ARTICLES Current Issue | Archive | Adv Search |
Effect of Strain Rate on Microstructure Evolution and Mechanical Property of 316LN Austenitic Stainless Steel at Cryogenic Temperature
Huipeng LI1, Yi XIONG1,2(), Yan LU1,2, Tiantian HE1, Meixiang FAN1, Fengzhang REN1,2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 Collaborative Innovation Center of Nonferrous Metals, Henan Province, Luoyang 471023, China
Cite this article: 

Huipeng LI, Yi XIONG, Yan LU, Tiantian HE, Meixiang FAN, Fengzhang REN. Effect of Strain Rate on Microstructure Evolution and Mechanical Property of 316LN Austenitic Stainless Steel at Cryogenic Temperature. Chinese Journal of Materials Research, 2018, 32(2): 105-111.

Download:  HTML  PDF(5278KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The uniaxial tensile property of 316LN austenitic stainless steel (ASS) plate at -40 ℃was examined by strain rates of 5×10-4 s-1 and 1×10-2 s-1 respectively, while the microstructure evolution was characterized by means of OM, TEM, SEM, XRD and 3D profile profiler. The results showed that the deformation induced martensite transformation occurred in 316LN austenitic stainless steel at cryogenic temperature, and the martensite transformation decreased with the increase of strain rate. The yield strength increased with the increase of strain rate, while the tensile strength and elongation decreased with the increase of strain rate. The tensile fractured surface showed typical ductile fracture. The deformed microstructure composed mainly of dislocation tangles and T-M(twin-matrix)lamellar structures. With the increase of strain rate, the dislocation tangles aggravated and the interlamellar spacing of T-M(twin-matrix)lamellar structures reduced.

Key words:  metallic materials      316LN ASS      strain rate      microstructure      mechanical properties      deformation induced martensite transformation     
Received:  31 March 2017     
ZTFLH:  TG113  
Fund: Supported by National Natural Science Foundation of China (No. 51201061), and Program for Science, Technology Innovation Talents in Universities of Henan Province (No. 17HASTIT026), Science and Technology Project of Henan Province (No. 152102210077), Henan International Scientific and Technological Cooperation Project (No. 172102410032), Education Department of Henan Province (No. 16A430005) and Science and Technology Innovation Team of Henan University of Science and Technology (No. 2015XTD006)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.223     OR     https://www.cjmr.org/EN/Y2018/V32/I2/105

Fig.1  Microstructure of 316LN stainless steel after solution treatment
Fig.2  The dimension of tensile sample (unit: mm)
Fig.3  Microstructure of 316LN stainless steel with different strain rates at -40℃ (a, c) 5×10-4 s-1; (b, d) 1×10-2 s-1
Fig.4  Stress-strain curves of 316LN stainless steel at -40℃
Fig.5  XRD patterns of the tensile samples at -40℃
Fig.6  Morphologies of 316LN austenitic stainless steel at different strain rates (a, b) before deformation; (c, d) 5×10-4 s-1; (e, f) 1×10-2 s-1; (g) SEM, 5×10-4 s-1; (h) SEM, 1×10-2 s-1
Fig.7  Fracture surface morphologies of 316LN stainless steel at different strain rates under temperatures of -40℃ (a) 1×10-2 s-1; (b) 5×10-4 s-1
[1] Talonen J, Nenonen P, Pape G.Effect of strain rate on the strain-induced-martensite transformation and mechanical properties of austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2005, 36: 421
[2] Liu W, Li Z B, Wang X,et al.Effect of strain rate on strain induced α?-martensite transformation and mechanical response of austenitic stainless steels[J]. Acta Metallurgica Sinica, 2009, 45(3): 285(刘伟, 李志斌, 王翔等. 应变速率对奥氏体不锈钢应变诱发α?-马氏体转变和力学行为的影响[J]. 金属学报, 2009, 45(3): 285)
[3] Ye L Y, Li X F, Chen J.Influence of tensile strain rates on mechanical properties of 304 austenitic stainless steel at room temperature[J]. Journal of Plasticity Engineering, 2013, 20(2): 89(叶丽燕, 李细锋, 陈军. 不同拉伸速率对SUS304不锈钢室温拉伸力学性能的影响[J]. 塑性工程学报, 2013, 20(2): 89)
[4] Hei Z G, Duan X W, Liu J S.Influence of temperature and strain rate on the high-temperature performances of 316 LN steel[J]. Journal of Taiyuan University of Science and Technology, 2012, 33(4): 290(黑志刚, 段兴旺, 刘建生. 温度和应变速率对316LN钢高温性能的影响[J]. 太原科技大学学报, 2012, 33(4): 290)
[5] Prasad Reddy G V, Sandhya R, Sankaran S,et al. Creep-fatigue interaction behavior of 316LN austenitic stainless steel with varying nitrogen content[J]. Materials and Design, 2015, 88: 972
[6] Prasad Reddy G V, Mariappan K, Kannan R, et al.Effect of strain rate on low cycle fatigue of 316LN stainless steel with varying nitrogen content: Part-II fatigue life and fracture[J]. International Journal of Fatigue, 2015, 81: 309
[7] Prasad Reddy GV, Kannan R, Mariappan K, et al.Effect of strain rate on low cycle fatigue of 316LN stainless steel with varying nitrogen content: Part-I cyclic deformation behavior[J]. International Journal of Fatigue, 2015, 81: 299
[8] Park W S, Yoo S W, Kim M H,et al.Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments[J]. Materials and Design, 2010, 31: 3630
[9] Byun T S, Lee E H, Hunn J D.Plastic deformation in 316LN stainless steel-characterization of deformation microstructures[J]. Journal of Nuclear Materials, 2003, 321: 29
[10] Byun T S, Hashimoto N, Farrell K.Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels[J]. Acta Materialia, 2004, 52(13): 3889
[11] Barat K, Bar H N, Mandal D, et al.Low temperature tensile deformation and acoustic emission signal characteristics of AISI304LN stainless steel[J]. Materials Science & Engineering A, 2014, 597: 37
[12] Meyers M A, Vohringer O, Lubarda V A.The onset of twinning in metals: A constitutive description[J]. Acta Materialia, 2001, 49(19): 4025
[13] Goodchild D, Roberts W T, Wilson D V.Plastic deformation and phase transformation in textured austenitic stainless steel[J]. Scripta Metallurgica, 1970, 18: 1137
[14] Lecroisey F, Pineau A.Martensitic transformations induced by plastic-deformation in Fe-Ni-Cr-C system[J]. Metallurgical Transactions, 1972, 3(2): 387
[15] Hecker S S, Stout M G, Staudhammer K P, et al.Effects of strain state and strain rate on deformation-induced transformation in 304 stainless-steel .1. magnetic measurements and mechanical-behavior[J]. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 1982, 13(4): 619
[16] Shrinivas V, Varmal S K, Murr E.Deformation-induced martensitic characteristics in 304-sainless and 316-stainless steels during room-temperature rolling[J]. Metallurgical and Materials Transactions A, 1995, 26(3): 661
[17] Zou D Q, Li S H, He J.Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels[J]. Materials Science and Engineering A, 2017, 680: 54
[18] Ferreira P J, Vander Sande J B, Amaral Fortes M, et al. Microstructure development during high-velocity deformation[J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3091
[19] Chen L F, Xiong Y, Li H P, et al.Microstructure evolution and mechanical properties of 316LN austenitic stainless steel after tensile deformation at different temperatures[J].Transactions of Materials and Heat Treatment, 2016, 37(10): 131(陈路飞, 熊毅, 李会鹏等. 不同温度下316LN奥氏体不锈钢拉伸变形后的组织演变与性能[J]. 材料热处理学报, 2016, 37(10): 131)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!