Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (2): 95-98    DOI: 10.11901/1005.3093.2015.343
Orginal Article Current Issue | Archive | Adv Search |
Influence of Dy2O3 Doping on Coercivity of Mechanically Milled Nd2Fe14B/α-Fe Composite Magnets
LI Yingfei, TIAN Na**(), FAN Xiaodong, YOU Caiyin
(School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China)
Cite this article: 

LI Yingfei, TIAN Na, FAN Xiaodong, YOU Caiyin. Influence of Dy2O3 Doping on Coercivity of Mechanically Milled Nd2Fe14B/α-Fe Composite Magnets. Chinese Journal of Materials Research, 2016, 30(2): 95-98.

Download:  HTML  PDF(808KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nd2Fe14B/α-Fe composite magnets were fabricated by mechanically ball milling. The influence of Dy2O3 doping on the coercivity of the nanocomposite magnets was studied in detail. It was found that the coercivity of the composite magnets can be significantly improved by Dy2O3 doping, and the annealing temperature corresponding to the maximum coercivity decreases with the increase of Dy2O3 content. X-ray diffraction analysis shows that the lattice parameters of Nd2Fe14B decreased due to Dy2O3 doping, indicating that (Nd, Dy)2Fe14B hard magnetic phase formed after Dy partial replacement for Nd. Therefore, the enhancement of coercivity of the magnets can be mainly attributed to the increase of the magnetic crystalline anisotropy of the hard magnetic phase. However, with the increase of the magnetic crystalline anisotropy, the effective exchange coupling length was shortened, thereby, the coercivity dropped due to over doping of Dy2O3.

Key words:  metal material      Nd2Fe14B/α      -Fe composite magnet      Dy2O3 doping      coercivity      exchange coupling     
Received:  12 June 2015     
ZTFLH:  O482  
  TM271  
Fund: *Supported by National Natural Science Foundation of China Nos.51301129, 51171148& 51371140, Fok Ying Tong Education Foundation No.131103, Shaanxi Natural Science Basic Research Plan No.2013JQ6008 and the Pivot Innovation Team of Shaanxi Electric Materials and Infiltration Technique No.2012KCT-25

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.343     OR     https://www.cjmr.org/EN/Y2016/V30/I2/95

Fig.1  X-ray diffraction patterns of the composite magnets annealed at 973 K
x /% a /nm c /nm Vcell /nm3
0 0.8779 1.2176 0.9383
1 0.8782 1.2165 0.9382
3 0.8719 1.2140 0.9230
5 0.8697 1.2098 0.9152
7 0.8727 1.2088 0.9206
Table 1  Lattice parameters of composite magnets annealed at 973 K
Fig.2  Coercivity of composite magnets varying with the annealing temperature (measured at room temperature)
Fig.3  Hysteresis loops of composite magnets annealed at 973 K (measured at room temperature)
Fig.4  Relationship between coercivity of composite magnets and measuring temperatures (70 K-300 K), the coercivity of composite magnets varying with the content of Dy2O3 at 70 K and 300 K, inset
1 ZHOU Shouzeng, DONG Qingfei,Super Strong Permanent Magnet-Rare Earth Iron Based Permanent Magnetic Material, ( Beijing, Metallurgical Industry Press, 1999)p.9-12
(周寿增, 董清飞, 超强永磁体--稀土铁系永磁材料, (北京: 冶金工业出版社, 1999)p.9-12)
2 R. Skomski, J. M. D.Coey, Giant energy product in nanostructured two-phase magnets, Phys. Rev. B, 48, 15812(1993)
3 M. Marinescu, H. Chiriac, M. Grigoras, Magnetic properties of bulk nanocomposite permanent magnets based on NdDyFeB alloys with additions, J. Magn. Magn. Mater., 290-291, 1267(2005)
4 J. Li, Y. Liu, Y.L. Ma, Effect of niobium on microstructure and magnetic properties of bulk anisotropic NdFeB/α-Fe nanocomposites, J. Magn. Magn. Mater., 324, 2292(2012)
5 W. S. Zha, J. Y. Liu, T. X. Song, Z. Y. Wang, Differences of element distribution between free and wheel side surface of NdFeB/α-Fe ribbons, J. Rare Earths, 29(1), 94(2011)
6 Y. P. Wang, C. Y. You, J. W. Wang, N. Tian, Z. X. Lu, L. L. Ge, Coercivity enhancement of Nd2Fe14B/α-Fe nanocomposite magnets through neodymium diffusion under annealing, J. Rare Earths, 30(8), 757(2012)
7 X. D. Fan, N. Tian, C. Y. You, Influence of Nd Doping on the Magnetic Properties of Nd2Fe14B/α-Fe Nanocomposite Magnets, Mater. Sci. Forum, 809-810, 88(2015)
8 Z. W. Liu, D. Y. Qian, L. Z. Zhao, Z. G. Zheng, X. X. Gao, R. V. Ramanujan,Enhancing the coercivity, thermal stability and exchange coupling of nano-composite (Nd, Dy, Y)-Fe-B alloys with reduced Dy content by Zr addition, J. Alloys Compd., 606, 44(2014)
9 K. Löewe, C. Brombacher, M. Katter, O. Gutfleisch, Temperature-dependent Dy diffusion processes in Nd-Fe-B permanent Magnets, Acta Matell., 83, 248(2015)
10 W. F. Li, H. Sepehri-Amin, T. Ohkubo, N. Hase, K. Hono,Distribution of Dy in high-coercivity (Nd, Dy)-Fe-B sintered magnet, Acta Matell., 59, 3061(2011)
11 W. Q. Liu, H. Sun, X. F. Yi, X. C. Liu, D. T. Zhang, M. Yue, J. X. Zhang, Coercivity enhancement in Nd-Fe-B sintered permanent magnet by Dy nanoparticles doping, J. Alloys Compd., 501, 67(2010)
12 F. Xu, J. Wang, X. P. Dong, L. T. Zhang, J. S. Wu, Grain boundary microstructure in DyF3-diffusion processed Nd-Fe-B sintered magnets, J. Alloys Compd., 509, 7909(2011)
13 X. G. Cui, C. Y. Cui, X. N. Cheng, X. J. Xu, Effect of Dy2O3 intergranular addition on thermal stability and corrosion resistance of Nd-Fe-B magnets, Intermetallics, 55, 118(2014)
14 M. Komuro, Y. Satsu, Y. Enomoto, H. Koharagi, High electrical resistance hot-pressed NdFeB magnet for low loss motors, Appl. Phys. Lett., 91, 102503(2007)
15 C. Y. You, X. K. Sun, L. Y. Xiong, W. Liu, B. Z. Cui, X. G. Zhao, D. Y. Geng, Z. D. Zhang, Effects of the precursor ingot for Nd2Fe14B/α-Fe nanocomposite magnets prepared by mechanical milling, J. Magn. Magn. Mater., 268, 403(2004)
16 X. B. Liu, Z. Altounian, The partitioning of Dy and Tb in NdFeB magnets: A first-principles study,J. Appl. Phys., 111, 07A701(2012)
17 M. J. Kim, Y. B. Kim, C. S. Kim, T. K. Kim,Spin reorientation and magnetocrystalline anisotropy of (Nd1-xDyx)2 Fe14B, J. Magn. Magn. Mater., 224, 49(2001)
[1] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[2] XIAO Han, ZHOU Yuhang, CHEN Lei, ZHANG Xiongchao, CUI Yunxin, XIONG Chi. Effect of Isothermal Time on Microstructure and Properties of Thixo-extruded Tin Bronze Bushing[J]. 材料研究学报, 2022, 36(9): 641-648.
[3] HE Yufeng, WANG Li, WANG Dong, WANG Shaogang, LU Yuzhang, GU Ashan, SHEN Jian, ZHANG Jian. Effect of Hot Isostatic Pressing on Microstructure of a Third-Generation Single Crystal Superalloy DD33[J]. 材料研究学报, 2022, 36(9): 649-659.
[4] WANG Jun, WANG Kelu, LU Shiqiang, LI Xin, OUYANG Delai, QIU Qian, GAO Xin, ZHANG Kaiming. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy[J]. 材料研究学报, 2022, 36(3): 175-182.
[5] YU Jiaying, YANG Xixiang, ZHAN Desong, YANG Ke, REN Ling, WANG Jingren, XU Jiawei. Antibacterial Property and in vitro Biocompatibility of a Ti-Zr-Cu Alloy[J]. 材料研究学报, 2021, 35(11): 873-880.
[6] YANG Dongya, LI Weitao, WANG Honggang, GAO Gui, CHENG Shengsheng, REN Junfang, TIAN Song. Effect of Counterpart Ring Surface Roughness on Wear Process of Bismuth Bronze[J]. 材料研究学报, 2021, 35(10): 732-740.
[7] GU Wei, ZHANG Zhijian, YANG Jiaquan. Effect of Preparation Process on Magnetic Properties of Amorphous Magnetic Powder Cores[J]. 材料研究学报, 2020, 34(4): 291-298.
[8] Zhiping HU, Yunbo XU, Hui LIU, Le WANG. Microstructure Evolution and Mechanical Properties of Cold-rolled Mn-Al TRIP Steel with δ Ferrite[J]. 材料研究学报, 2018, 32(3): 177-183.
[9] Xuemeng WANG,Siqian ZHANG,Ziyao YUAN,Lijia CHEN. Effect of Heat Treatment on Mechanical Properties of Ti-3Al-8V-6Cr-4Mo-4Zr Alloy[J]. 材料研究学报, 2017, 31(6): 409-414.
[10] LI Yuhai, ZHANG Baibing, DONG Xuguang, WANG Shuai. Comparative Study on Corrosion Resistance of Micro Arc Oxidation Ceramic Coatings on Mg-Mn-RE Alloy[J]. 材料研究学报, 2016, 30(3): 235-240.
[11] Yongwen JIANG,Tao NIU,Chenggang AN,Xinlang WU,Caixia ZHANG,Xiaoli DAI. Strain Aging Behavior of X70 Pipeline Steel[J]. 材料研究学报, 2016, 30(10): 767-772.
[12] WANG Ge, BAO Jinfeng, WANG Xinghua, CHEN Yuhe, ZHOU Fuwei, LI Qiang. Preparation and Magnetic Properties of Amorphous- and Nanocrystalline-alloys of FeCuNbSiB with high Fe-content[J]. 材料研究学报, 2016, 30(1): 38-44.
[13] Lin LU,Longgang HOU,Hebin WANG,Jinxiang ZHANG,Hua CUI,Jinfeng HUANG,Yongan ZHANG,Jishan ZHANG. Hot Deformation of Spray-Formed Nb-Containing High Speed Steel—A Study Using Processing Map[J]. 材料研究学报, 2015, 29(7): 496-504.
[14] Yingguang LIU,Rongyuan JU,Huijun LI,Guangyi ZHAO. Constitutive Behavior of Bimodal Nanocrystalline Materials[J]. 材料研究学报, 2015, 29(12): 889-894.
[15] Jie LIU,Xuyan LIU,Fang LIU,Fei WANG,Deng PAN. Fabrication of a Three-dimensional Nanoporous Cu-Ti Alloy with Excellent Electrochemical Capacitance Performance[J]. 材料研究学报, 2015, 29(12): 913-920.
No Suggested Reading articles found!