Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (7): 549-554    DOI: 10.11901/1005.3093.2014.422
Current Issue | Archive | Adv Search |
Effect of Addition of Alloying Elements in Welding Flux on Microstructure and Toughness of Weld Seam of FV520(B) Steel
Jihong LI(),Juanjuan LIU,Min ZHANG,Mingzhi LIU,Jiang TANG
College of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
Cite this article: 

Jihong LI,Juanjuan LIU,Min ZHANG,Mingzhi LIU,Jiang TANG. Effect of Addition of Alloying Elements in Welding Flux on Microstructure and Toughness of Weld Seam of FV520(B) Steel. Chinese Journal of Materials Research, 2015, 29(7): 549-554.

Download:  HTML  PDF(6227KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of addition of alloying elements of medium carbon Fe-Mn and Ni in the welding flux on the microstructure and toughness of the weld seam of FV520(B) steel was investigated by means of impact test, metallographic microscope, SEM and X-ray diffractometer. The results show that the microstructure of the weld seam of FV520(B) steel mainly composed of tempered sorbite and lath martensite with some residual austenite and secondary phases. With the increasing amount of alloying elements Mn and Ni, the microstructure of weld seam became finer, and the lamellae of martensite became thinner and distributed more uniformly. The addition of allying elements into a basic flux rather than an acidic ones showed much higher effectiveness in improvement of the toughness of the weld seam. The induced Mn and Ni can enhance the austenitic amount in the weld seam, which in turn plays an important role in enhancing its toughness. Moreover, the induced Ni rather than Mn was more effective in enhancing the toughness of the weld seam.

Key words:  metallic materials      welding flux      alloying element      FV520(B) steel      microstructure      impact toughness     
Received:  14 August 2014     
Fund: *Supported by National Natural Science Foundation of China No.51274162, the Foundation of Shaanxi Educational Committee No. 14JK1539, and the Science and Technology Program of Xi’an No. CX12163.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.422     OR     https://www.cjmr.org/EN/Y2015/V29/I7/549

C Si Mn P S Cr Ni Cu Mo Nb Ti B Re
Parent metal 0.04~ 0.07 0.38~ 0.7 1.0 0.025 0.025 13.0~ 14.5 5.0~ 6.0 1.3~ 1.8 1.3~ 1.8 0.25~ 0.45 - - -
Electrode 0.05 0.4~ 0.6 0.8~ 1.0 0.01 0.01 13.0~ 13.5 5.0~ 5.5 0.9~ 1.3 1.4~ 1.6 0.2~ 0.4 0.2~ 0.15 0.002~ 0.006 0.15~ 0.20
Table 1  Chemical compositions of parent material and electrode (%, mass fraction)
No. Coating type Carbon ferromanganese Nickel power
1# acidic 5 -
2# acidic 8 2
3# basic 5 -
4# basic 8 2
5# basic 5 5
6# basic 10 -
Table 2  Coating formula of electrode (%, mass fraction)
Sample α(110) -γ(111) α(200) -γ(200) α(211) -γ(200) Average
C 18.0 17.7 19.6 18.5
D 22.3 26.5 24.4 24.4
E 24.2 24.4 26.9 25.2
F 19.2 22.6 20.9 20.9
Table 3  Austenite content of welded metal (%, volume fraction)
Fig.1  Microstructure of weld area of different samples, (a) A, (b) B, (c) C, (d) D, (e) E, (f) F
Fig.2  XRD spectra of weld
Fig.3  Impact test results of welded joint of different samples
Fig.4  Comparison of austenite content and shock absorption function of different samples
Fig.5  SEM results of impact fracture of weld area of different samples, (a) C, (b) D, (c) E, (d) F
1 J. L. Fan, X. L. Guo, C. W. Wu, Y.G. Zhao,Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints, Materials Science and Engineering A, 528(29/30), 8417(2011)
2 FAN Junling,GUO Xinglin, ZHAO Yanguang, WU Chengwei, Predictions of S-N curve and residual life of welded Joints by quantitative thermographic method, Journal of Materials Engineering, (12), 29(2011)
2 (樊俊铃, 郭杏林, 赵延广, 吴承伟, 定量热像法预测焊接接头的曲线和残余寿命, 材料工程, (12), 29(2011))
3 ZHANG Yiliang,ZHU Yunqing, ZHANG Zhenhai, Blower impeller fast fracture detection and failure analysis, Journal of Safety and Environment, 7(1), 132(2007)
3 (张亦良, 朱蕴卿, 张振海, 鼓风机叶轮快速断裂的检测及失效分析, 安全与环境学报, 7(1), 132(2007))
4 ZHANG Min,CHAO Lining, LI Jihong, ZHANG Meili, Failure analysis on fracture of gas blower turbine wheel, Hot Working Technology, 40(12), 190(2011)
4 (张 敏, 晁利宁, 李继红, 张美丽, 某焦炉煤气风机叶轮断裂失效分析, 热加工工艺, 40(12), 190(2011))
5 ZHOU Qianqing,ZHAI Yuchun, Aging process optimization for a high strength and toughness of FV520B martensitic steel, Acta Metallurgica Sinica, 45(10), 1249(2009)
5 (周倩青, 翟玉春, 高强高韧FV520B马氏体钢的时效工艺优化, 金属学报, 45(10), 1249(2009))
6 XU Zuyao,Effect of alloying elementts in specical steel heat treatment, Ordnance Material Science and Engineering, 3(1), 1(1982)
6 (徐祖耀, 特殊钢热处理中合金元素的作用, 兵器材料科学与工程, 3(1), 1(1982))
7 ZHANG Futian,JIANG Jian, SONG Jianxian, HAN Ci, Study of Mossbauer spectroscopy of Ni9 steel rotary austenitic phase transformation, Acta Metallurgica Sinica, 22(4), 169(1986)
7 (张弗天, 姜 健, 宋建先, 韩 慈, Ni9钢回转奥氏体相变的Mossbauer谱学研究, 金属学报, 22(4), 169(1986))
8 Zhu Dong,Wang Fuxing, Cai Qigong, Zheng MingXin, Cheng YinQuian, Effect of retained austenite on rolling element fatigue and its mechanism, Wear, 105(3), 223(1985)
9 XU Zuyao,Low-carbon martensite and interlath austenite in steels, Iron & Steel, 22(3), 33(1987)
9 (徐祖耀, 钢中的低碳马氏体及条间奥氏体, 钢铁, 22(3), 33(1987))
10 H. Nakagawa, T. Miyazaki,Effect of retained austenite on the microstructure and mechanical properties of martensitic precipitation hardening stainless steel, Journal of Materials Science, 34, 3901(1999)
11 S. D. Antolovich, B. Singh,Study on the toughness increment associated with the austenite to martensite phase transformation in TRIP steels, Metal Trans, (8), 2135(1971)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!