Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (4): 269-276    DOI: 10.11901/1005.3093.2014.789
Current Issue | Archive | Adv Search |
Effect of Nanometer-Sized Carbides and Grain Boundary Density on Performance of Fe-C-Mo-M(M=Nb, V or Ti) Fire Resistant Steels
Zhengyan ZHANG1,2,Xinjun SUN1,Zhaodong LI1,Xiaojiang WANG3,Qilong YONG1,**(),Guodong WANG2
1. Department of Structurale Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2. State key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, China.
3. Department of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

Zhengyan ZHANG,Xinjun SUN,Zhaodong LI,Xiaojiang WANG,Qilong YONG,Guodong WANG. Effect of Nanometer-Sized Carbides and Grain Boundary Density on Performance of Fe-C-Mo-M(M=Nb, V or Ti) Fire Resistant Steels. Chinese Journal of Materials Research, 2015, 29(4): 269-276.

Download:  HTML  PDF(5700KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-C-Mo-M steels (where M is Nb, V or Ti, ~0.1%, and Mo ≤0.2% ) were produced by thermal mechanical control processing (TMCP), and then their performance was characterized in terms of failure temperature by means of constant load tensile test while heating from ambient temperature up to 800oC with a heating rate 28 oC/min. The boundary misorientation of the steels after TMCP was examined by electron back scattered diffraction (EBSD), and the precipitates of MC type carbides were characterized by transmission electron microscopy (TEM). The results show that the addition of 0.2% Mo in Fe-C-Nab/V steels increases the failure temperature of steels by 40℃. It is believed that the low-angle grain boundary provided the favorable nucleation site for MC type carbides, which in turn will accelerate the kinetics of precipitation process. The fine and dispersed precipitates of MC type carbides induce significant precipitation strengthening for the steels during the constant load tensile process, thus resulting in higher failure temperature. Among the tested steels, the failure temperature of Ti-Mo steel is the highest due to its highest low-angle grain boundary density which results in the fast precipitation of MC type carbides. The failure temperature of Nb-Mo steel comes the second and that of the V-Mo steels is the lowest because of its lowest low angle grain boundary density leading to the lowest density of precipitated MC type carbides.

Key words:  metallic material      intelligent fire resistant steel      failure temperature      precipitation strengthening      low-angle grain boundary density      nanometer-sized carbide     
Received:  30 December 2014     
Fund: *Supported by National Basic Research Program of China No. 2010CB630805 and National Natural Science Foundation of China No. 51201036.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.789     OR     https://www.cjmr.org/EN/Y2015/V29/I4/269

Steels C Mn P≤ S≤ Al Mo Ti Nb V B
V 0.035 1.37 0.0037 0.0058 0.008 0.013 0.140 0.0018
V-Mo 0.037 1.39 0.0036 0.0056 0.012 0.190 0.014 0.140 0.0009
Nb 0.036 1.35 0.0034 0.0057 0.012 0.010 0.100 0.0012
Nb-Mo 0.042 1.38 0.004 0.006 0.014 0.190 0.015 0.100 0.0010
Ti-Mo 0.034 1.53 0.0074 0.005 0.036 0.198 0.110 0.013 0.0015
Low- Nb-Mo 0.036 1.56 0.007 0.0049 0.054 0.196 0.033 0.041 0.0012
Table 1  Chemical composition of tested steels (%, mass fraction)
Fig.1  Stain-Temperature curves of tested steels
Steels Microstructure Low grain boundary density/μm-1 Volume fraction of MC phase at 600℃/% Failure temperature/℃
V GB+QF+ P 0.53 0.167 647
V-Mo GB+ QF 0.82 0.372 692
Nb GB+QF+ P 0.68 0.115 666
Nb-Mo GB+ QF 0.87 0.210 706
Ti-Mo GB 1.23 0.294 714
Low-Nb-Mo GB 1.15 0.086 675
Table 2  Microstructure amount of MC phase (at 600℃) and the failure temperature of tested steels
Fig.2  SEM images for different tested steels (a) V, (b) V-Mo, (c) Nb, (d) Nb-Mo, (e) Ti-Mo, (f) Low-Nb-Mo
Fig.3  Grain boundary distribution of tested steels (a) V, (b) V-Mo, (c) Nb, (d) Nb-Mo, (e) Ti-Mo, (f) Low-Nb-Mo
Fig.4  Total grain boundary density of tested steels VS the misorientation of ferrite grain ranged of 0~61°, in step of 5°(the inserted figture shows the grain boundary density of tested steels VS the misorientation of ferrite grain ranged of 0-15°, in step of 2°)
Fig.5  TEM images of precipitates in rolled samples for (a) Nb-Mo steel, (c) V-Mo steel, (e) Ti-Mo steel and in constant load tensile samples for (b) Nb-Mo steel, (d) V-Mo steel, (f) Ti-Mo steel
Fig.6  Distribution density of precipitates in (a) Nb-Mo, (b) V-Mo, (c) Ti-Mo steels after constant load tensile
1 YU Qingbo, LIU Xianghua, ZHAO Xianpin, Microstrctural Morphology and Analysis of TMCP Steels (Beijing, Science Press, 2010)p. 126
1 (于庆波, 刘相华, 赵贤平, 控轧控冷钢的显微组织形貌及分析, (北京, 科学出版社, 2010)p. 126)
2 WAN Weiguo, WU Jiecai, Journal of building materials, 2, 2(2006)
2 (完卫国, 吴结才, 耐火钢的开发与应用综述, 建筑材料学报, 2, 2(2006))
3 W. Sha, B. R. Kirby, F. S. Kelly,The behavior of structural steels at elevated temperatures and the design of fire resistant steels, Mater. Trans., 42(9), 1913(2001)
4 PU Yumei, XI Tie, Development and use of high performance building steel produced by Ma Steel, Steel Constructure, 22(91), 70(2007)
4 (蒲玉梅, 奚铁, 马钢建筑用高效结构钢材的开发应用, 钢结构, 22(91), 70(2007))
5 ZHANG Chengwei, Lv Zuorong, in 2009 SCM Annual Meeting Proceedings, The design and exploition to fire-resistant steel, Edited by the Chinese Society for Metals(Beijing, Metallurgical Industry Press, 2009)p. 348
5 (张成伟, 吕作荣, 2009年第七届中国钢铁年会论文集, 本钢耐火钢的开发设计, 中国金属学会编, (北京, 冶金工业出版社, 2009)p. 348)
6 Wuhan Iron & Steel (Group) Corp.,Production method of high-performance fire resistant and weathering steel, China patent: CN1132958C(2003)
6 (武汉钢铁集团公司, 高性能耐火耐侯钢及其生产方法, 中国专利: CN1132958C(2003))
7 K. P. Bimal,Microstructures and properties of low-alloy fire resistant steel, Bull. Mater. Sci., 29(1), 59(2006)
8 R. C. Wan, F. S, L. T. Zhang, A. D. Shan, Development and Study of High strength Low Mo Fire resistent Steel. Mater. Des., 36, 227(2012)
9 PAN Xiaoqiang, ZUO Rulin, DANG Ying, LI Cong, Study on microstructure of fire resistant steels containing molybdenum and vanadium, Physics Examination and Testing, 25(5), 9(2007)
9 (潘小强, 左汝林, 党 莹, 李 聪, Mo-V 耐火钢显微组织分析研究, 物理测试, 25(5), 9(2007))
10 J. G. Speer, R. W. Regier, D. K. Matlock, S. G. Jansto, Thermomechanical processing effects on the elevated temperature behavior of niobium bearing fire-resistant steel, Materials Science and Technology-Association for Iron and Steel Technology, 6,(3711)2007
11 E. G. Dere, H. Sharma, R. H. Petrov, J. Sietsma, S. E. Offerman,Effect of niobium and grain boundary density on the fire resistence of Fe-C-Mn steel, Scripta Mater., 69, 651(2013)
12 S. C. Hong, S. H. Lim, H. S. Hong, K. J. Lee, D. H. Shin, K. S. Lee,Effects of Nb on strain indued ferrite transformation in C-Mn steel, Mater. Sci. Eng. A, 355, 241(2003)
13 Y. B. Cao, F. R. Xiao, G. Y. Qiao, C. J. Huang, X. B. Zhang,Strain-induced precipitation and softening behaviors of high Nb microalloyed steels, Mater. Sci. Eng. A, 552, 502(2012)
14 WANG Zhenqiang,The precipitation behavior in Ti micro-alloyed steel and the effects of Mn and Mo, Doctoral dissertation, Tsinghua University(2013)
14 (王振强,Ti微合金钢中的析出行为与合金元素Mn和Mo的影响, 博士学位论文, 清华大学(2013))
15 YONG Qilong, MA Mingtu, WU Baorong, Microalloyed Steels: Physical and Mechanical Metallurgy, (Beijing, China Machine Press, 1989)p.89
15 (雍岐龙, 马鸣图, 吴宝榕, 微合金钢, 物理和力学冶金, (北京, 机械工业出版社, 1989)p. 89)
16 WENG Yuqing, Ultrafine Grained Ssteel, (Beijing, Metallurgical Industry Press, 2003)p.814)
16 (翁宇庆, 超细晶钢, (北京, 冶金工业出版社, 2003)p. 814)
17 PAN JinSheng, TONG Jianmin, TIAN Minbo, Fundamentals of Material Science, (Beijing, Tsinghua University Press, 2011)p. 660
17 (潘金生, 仝健民, 田民波, 材料科学基础, (北京, 清华大学出版社, 2011)p.660)
18 YONG Q L, Secondary Phase in Steels, (Beijing, Metallurgical Industry Press, 2006)p.361
18 (雍岐龙, 钢铁材料中的第二相, (北京, 冶金工业出版社, 2006)p. 361)
19 DONG Han, Advanced Steel Materials, (Beijing, Science Press, 2007)p.72
19 (董瀚, 先进钢铁材料, (北京, 科学出版社, 2007)p. 72)
20 GUO Jianting, Materials Science and Engineering for Superalloys, (Beijing, Science Press, 2008) p. 81
20 (郭建亭, 高温合金材料学, (北京, 科学出版社, 2008)p. 81)
21 W. B. Lee, S. G. Hong, C. G. Park, K. H. kim, S. H. Park,Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb, Scripta Mater., 43(4), 319(2000)
22 ZHANG Zhengyan, LI Zhaodong, YONG Qilong, SUN Xinjun, WANG Zhenqiang, WANG Guodong, Precipitation behavior of carbide during heating process in Nb and Nb-Mo micro-alloyed steels, Acta Metall. Sin., 51(3), 315(2015)
22 (张正延, 李昭东, 雍岐龙, 孙新军, 王振强, 王国栋, 升温过程中Nb和Nb-Mo微合金化钢中碳化物的析出行为研究, 金属学报, 51(3), 315(2015))
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
No Suggested Reading articles found!