Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (8): 567-572    DOI: 10.11901/1005.3093.2013.897
Current Issue | Archive | Adv Search |
Abrasive Wear Characteristics of Surface Gradient Composites of TaC Reinforced Iron Matrix Prepared by In-Situ Technology
Nana ZHAO1,Yunhua XU1,**(),Lisheng ZHONG2,Xing HUANG1,Wenke MENG1,Fangxia YE1
1. School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048
2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
Cite this article: 

Nana ZHAO,Yunhua XU,Lisheng ZHONG,Xing HUANG,Wenke MENG,Fangxia YE. Abrasive Wear Characteristics of Surface Gradient Composites of TaC Reinforced Iron Matrix Prepared by In-Situ Technology. Chinese Journal of Materials Research, 2014, 28(8): 567-572.

Download:  HTML  PDF(2862KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tantalum carbide gradient composite was fabricated via in-situ reaction of pure tantalum plate with gray cast at high temperature. The morphology, phase constituent, microhardness, and relative abrasion resistance of the composite were characterized by scanning electron microscopy, X-ray diffraction, microhardness tester and abrasive wear testing machine. The results show that the thickness of the gradient composite is about 475 μm. The cast 170 μm thick surface layer is a dense ceramic layer consisted of ~95% submicron TaC particles, and the highest micro-hardness value of which is 2328HV0.1; In the sub-layer, there exists a gradient distribution of TaC particles from 90% to 0% in volume fraction, correspondingly the microhardness value decreased from 915HV0.1 to 410HV0.1, and the size of the TaC particles increased to 0.5-1.5 μm; the interface between the composite and matrix exhibits a perfect metallurgical bonding. The TaC reinforced iron matrix surface gradient composite shows far superior wear resistance than the gray cast iron. The wear mechanism is mainly related with the local plastic deformation, micro cracking caused by misrouted broken carbide particles.

Key words:  composite      in-situ reaction      dense ceramic      abrasive wear     
Received:  26 November 2013     
Fund: *Supported by National High Technology Research and Development Program of China No.2013AA031803 and National Natural Science Foundation of China No.51374169.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.897     OR     https://www.cjmr.org/EN/Y2014/V28/I8/567

Materials C Si Mn P S Fe Al Cu Ta
HT300 2.57 <1.03 <1.04 <0.046 <0.018 Balance - - -
Ta plate - 0.06 <0.03 - - - 0.06 0.03 Balance
Table 1  Chemical composition of HT300 and Tantalum plate (mass fraction, %)
Fig.1  Differential thermal analysis thermogram for the Fe-Ta-C system
Fig.2  XRD spectra of TaC reinforced iron matrix surface gradient composites
Fig.3  Macrostructure of TaC reinforced iron matrix surface gradient composites
Fig.4  SEM of TaC reinforced iron matrix surface gradient composites in different reaction areas (a) the dense ceramic layer of TaC, (b) the composite layer of TaC particulate
Fig.5  Microhardness distribution in different areas of surface gradient composites
Fig.6  Relative wear resistance of TaC reinforced iron matrix surface gradient composites in different reaction zone
Fig.7  SEM images for the wore morphologies under 5 N of (a) [A], (b) [B], (c) matrix
1 C. S. Ramesh, A. Ahamed,Friction and wear behaviour of cast Al 6063 based in situ metal matrix composites, Wear, 271(9-10), 1928(2011)
2 ZHAO Yutao, DAI Qixun, Metal Matrix Composites (Beijing, Mechanical Industry Press, 2007) p.1
2 (1)
3 J. Wang, Y. S Wang, Y. C. Ding,Production of (Ti, V)C reinforced Fe matrix composites, Materials Science and Engineering: A, 454, 75(2007)
4 S. T. Gu, G. Z. Chai, H. P Wu, Y. M. Bao,Characterization of local mechanical properties of laser-cladding H13-TiC composite coatings using nanoindentation and finite element analysis, Materials and Design, 39, 72(2012)
5 H. Yan, P. L. Zhang, Z. S. Yu, C. G. Li, R. D. Li,Development and characterization of laser surface cladding (Ti, W)C reinforced Ni-30 Cu alloy composite coating on copper, Optics Laser Technology, 44, 1351(2012)
6 M. Li, J. Huang, Y. Y. Zhu, Z. G. Li,Effect of heat input on the microstructure of in-situ synthesized TiN-TiB/Ti based composite coating by laser cladding, Surface Coatings Technology, 206(19-20), 4021(2012)
7 L. Q. Wang, J. S. Zhou, Y. J. Yu, C. Guo, J. M. Chen,Effect of powders refinement on the tribological behavior of Ni-based composite coatings by laser cladding, Applied Surface Science, 258(17), 6697(2012)
8 C. Guo, J. M. Chen, J. S. Zhou, J. R. Zhao, L. Q. Wang,Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating, Surface Coatings Technology, 206(8-9), 2064(2012)
9 J. X. Yang, F. L. Liu, X. H. Miao, F. Yang,Influence of laser cladding process on the magnetic properties of WC-FeNiCr metal-matrix composite coatings, Journal of Materials Processing Technology, 212(9), 1862(2012)
10 S. F. Zhou, X. Q. Dai, H. Z. Zheng,Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding, Optics Laser Technology, 44(10), 190(2012)
11 R. G. Song, C. Wang, Y. Jiang, H. Li, G. Lu, Z. X. Wang,Microstructure and properties of Al2O3/TiO2 nanostructured ceramic composite coatings prepared by plasma spraying, Journal of Alloys and Compounds, 544, 13(2012)
12 S. Barzilai, A. Raveh, N. Frage,Inter-diffusion of carbon into niobium coatings deposited on graphite, Thin Solid Films, 496(12), 450(2006)
13 S. Barzilai, N. Frage, A. Raveh,Niobium layers on graphite: Growth parameters and thermal annealing effects, Surface Coatings Technology, 200(14-15), 4646(2006)
14 C. N. Zoita, L. Braic, A. Kiss, M. Braic,Characterization of NbC coatings deposited by magnetron sputtering method, Surface Coatings Technology, 204(12-13), 2002(2010)
15 X. Jin, L. Z. Wu, Y. G. Sun, L. C Guo,Microstructure and mechanical properties of ZrO2/NiCr functionally graded materials, Materials Science and Engineering A, 509(1-2), 63(2009)
16 JIN Xin,WU Linzhi, SUN Yuguo, GUO Licheng, YU Hongjun, Experimental investigation of the quasi-static mixed-mode crack initiation in NiCr/ZrO2 functionally graded materials by digital image correlation, Acta Materiae Compositae Sinica, 26(6), 150(2009)
16 (金 鑫, 吴林志, 孙雨果, 果立成, 于红军, NiCr/ZrO2功能梯度复合材料中混合型准静态裂纹启裂的数字散斑相关方法实验研究, 复合材料学报, 26(6), 150(2009))
17 YU Sirong,REN Luquan, ZHANG Xinping, LIU Yaohui, HE Zhenming, Structure and properties of hypereutectic Al-10%Fe alloy functionally gradient materials, Metallic Functional Materials, 7(6), 5(2000)
17 (于思荣, 任露泉, 张新平, 刘耀辉, 何镇明, A-10%Fe合金梯度材料的组织与性能, 金属功能材料, 7(6), 5(2000))
18 Z. F. Ni, Y. S. Sun, F. Xue, J. Bai, Y. J. Lu,Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate , Materials and Design, 32(3), 1462(2011)
19 K. Q. Feng, M. Hong, Y. Yang, W. J.Wang,Combustion synthesis of VC/Fe composites under the action of an electric field , International Journal of Refractory Metals and Hard Materials, 27(5), 852(2009)
20 G. S. Zhang, J. D. Xing, Y. M. Gao,Impact wear resistace of WC/hadfield steel composite and its interfacial characteristics , Wear, 260(7-8), 728(2006)
21 Z. Y. Xiao, L. Fang, W. Zhang, M. Shao, Y. Y. Li,Fabrication of NbCp-Reinforced iron matrix composites by PM techniques and its warm compaction , Journal of Iron and Steel Research, 14(5), 66(2007)
22 X. H. Zhang, G. E. Hilmas, W. G. Fahrenholtz,Densification and mechanical properties of TaC-based ceramics, Materials Science and Engineering: A, 501(1-2), 37(2009)
23 J. Wang, Y. S. Wang, Y. C. Ding, W. Gong,Microstructure and wear-resistance of Fe-(Ti, V)C composite , Material and Design, 28(7), 2207(2007)
24 A. I. Z. Farahat,Dilatometry determination of phase transformation temperatures during heating of Nb bearing low carbon steels, Journal of Materials Processing Technology, 204(1-3), 365(2008)
25 ZHONG Lisheng, Preparation of fifth subgroup B (VB) carbide particles reinforced iron matrix composites by in-situ and its abrasive wear performance studies, Doctoral Dissertation, Xi'an University of Architecture and Technology, 2011
25 (钟黎声, 第五副族碳化物颗粒增强铁基复合材料的原位制备, 博士学位论文, 西安建筑科技大学, 2011)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!