Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (4): 293-299    DOI: 10.11901/1005.3093.2013.847
Current Issue | Archive | Adv Search |
Influence of annealing treatment on Microstructure and Waves Absorption of Ni/TiO2 Nanocomposites
Naikun SUN(),Shengjie DU,Baosheng DU,Feng LIU,Meixing ZHAO
School of Science, Shenyang Ligong University, Shenyang 110159
Cite this article: 

Naikun SUN,Shengjie DU,Baosheng DU,Feng LIU,Meixing ZHAO. Influence of annealing treatment on Microstructure and Waves Absorption of Ni/TiO2 Nanocomposites. Chinese Journal of Materials Research, 2014, 28(4): 293-299.

Download:  HTML  PDF(2878KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni/TiO2 nanocomposite was prepared by mechano-chemical synthesis. The as-milled nanocomposite consists of hexagonal-structure rutile TiO2 and face-centered cubic structure Ni. Annealing treatment decreases both the lattice defects and the internal stress, while remarkably increases the grain size of metal Ni and the saturation magnetization. After annealing treatment the intrinsic emission, free exciton emission and bound exciton emission peaks of TiO2 exhibit a red shift, for which the reason may be the distortion of the band structure. For the as-milled nanocomposite an intense nonlinear dielectric resonance occurs at 15 GHz and a clear Cole-Cole semicircle was observed. Meanwhile, a reflection loss (RL) exceeding -10 dB in a frequency range of 14-16 GHz and a maximum value of RL as large as -32 dB are obtained for an 8 mm thick absorber. After annealing treatment the intensity of the natural resonances at 2.8 and 5.2 GHz has been significantly strengthened, leading to a remarkable improvement of microwave-absorption properties in the frequency range 2-6 GHz.

Key words:  composites      mechanochemical synthesis      Ni/TiO2 nanocomposites      luminescence properties      electromagnetic properties      annealing     
Received:  11 November 2013     
Fund: *Supported by Liaoning Provincial Natural Science Foundation of China No. 2013020105.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.847     OR     https://www.cjmr.org/EN/Y2014/V28/I4/293

Fig.1  XRD patterns (a, b) and SEM images (c, d) of samples A and B
Fig.2  Hysteresis loop (a) and emission spectra (b) of samples A and B
Fig.3  Relative complex permittivity (a) and relative complex permeability (b) of samples A and B dispersed in paraffin
Fig.4  Typical Cole-Cole semicircles for samples A (a) and B (b) dispersed in paraffin
Fig.5  Dielectric loss (a) and magnetic loss factors (b) of samples A and B dispersed in paraffin
Fig.6  Frequency dependence of the RL of the nanocomposites dispersed in paraffin for sample A (a) and for sample B (b)
1 ZHOU Kesheng,HUANG Kelong, KONG Deming, LI Zhiguang, The physical mechanism of the absorbing material and its design, Journal of Center South University Technology, 32(6), 617(2001)
1 (周克省, 黄可龙, 孔德明, 李志光, 吸波材料的物理机制及其设计, 中南工业大学学报, 32(6), 617(2001))
2 ZHENG Tianliang,LI Qian, ZHENG Kuangyu, WANG Bingcun, LU Lijun, Computer simulation analysis for ideal electromagnetism parameters of radar absorbing coating, Aerospace Materials & Technology, (3), 26(2008)
2 (郑天亮, 李 谦, 郑旷宇, 王兵存, 鲁立军, 雷达波吸波涂层理想电磁参数的计算机模拟分析, 宇航材料工艺, (3), 26(2008))
3 PANG Yongqiang,CHENG Haifeng, TANG Gengping, XING Xin, XIE Wei, Absorbing properties of Fe-Co alloy and hollow carbon fiber absorbing materials, Materials Review, 23(11), 5(2009)
3 (庞永强, 程海峰, 唐耿平, 邢 欣, 谢 炜, Fe-Co 合金和中空碳纤维吸波材料的吸波特性研究, 材料导报, 23(11), 5(2009))
4 TANG Enling,WANG Cong, Present research situation of absorbing materials absorbent, Process and Materials, (7), 61(2009)
4 (唐恩凌, 王 崇, 纳米吸波材料吸收剂的研究现状, 工艺与材料, (7), 61(2009))
5 J. L. Snoek,Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s, Physica, 14, 207(1948)
6 WANG Fei,HUANG Hao, XUE Fanghong, GUO Daoyuan, ZHAO Yanan, DONG Xinglong, Microwace absorption of (Fe, Ni) nanocomposites coated by (Fe, Ni)4N, Chinese Journal of Materials Research, 25(5), 449(2011)
6 (王 飞, 黄 昊, 薛方红, 郭道远, 赵亚楠, 董星龙, (Fe, Ni)4N包覆(Fe, Ni)纳米复合粒子的微波吸收特性, 材料研究学报, 25(5), 449(2011))
7 Q. Zhang, C. F. Li, Y. N. Chen, Z. Han, H. Wang, Z. J. Wang, D. Y. Geng, W. Liu, Z. D. Zhang,Effect of metal grain size on multiple microwave resonances of Fe/TiO2 metal-semiconductor composite, Applied Physics Letter, 97, 133115(2010)
8 X. G. Liu, D. Y. Geng, H. Meng, P. J. Shang, Z. D. Zhang,Microwave-absorption properties of ZnO-coated iron nanocapsules, Applied Physics Letter, 92, 173117(2008)
9 Z. G. Xie, D. Y. Geng, X. G. Liu, S. Ma, Z. D. Zhang,Magnetic and microwave-absorption properties of graphite-coated (Fe, Ni) nanocapsules, Journal of Materials Science and Technology, 27(7), 607(2011)
10 S. N. Xu, M. X. Zhao, Z. Q. Cai, N. K. Sun, F. Liu, B. S. Du, X. Y. Zhangand Z. J. Ling. Effect of annealing on the microwave-absorption properties of Ni/Al2O3 nanocomposites, Acta Metallurgica Sinica (English Letters), 26(4), 385(2013)
11 H. Wang, H. H. Guo, Y. Y. Dai, D. Y. Geng, Z. Han, D. Li, T. Yang, S. Ma, W. Liu, and Z. D. Zhang,Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules, Applied Physics Letter, 101, 083116(2012)
12 X. Ni, J. Ma, J. G. Li, D. M. Jiao, J. J. Huang, X. D. Zhang,Microwave characteristics of Co/TiO2 nanocomposites prepared by mechanochemical synthesis, Journal of Alloys and Compounds, 468, 386(2009)
13 LI Chanquan,ZHANG Xuefeng, WANG Weina, ZHU Xuguang, DONG Xinglong, HUANG Hao, Preparation and electromagnetic properties of iron, nickel and its alloy nanoparticles, Materials Engineering, (2), 46(2006)
13 (李灿权, 张雪峰, 王威娜, 朱旭光, 董星龙, 黄 昊, 铁、镍及其合金纳米粒子的制备及电磁性能研究, 材料工程, (2), 46(2006))
14 L. H. Qian, S. C. Wang, Y. H. ZhaoK. Lu,GHz Range absorption properties of Fe/Y2O3 nanocomposites prepared by melt-spun technique , Acta Metallurgica, 50, 3425(2002)
15 N. K. Sun, F. Liu, Y. B. Gao, Z. Q. Cai, B.S. Du, S.N. Xu, P.Z. Si,Effect of microstrain on the magnetism and magnetocaloric properties of MnAs0.97P0.03, Applied Physics Letter, 100, 112407(2012)
16 N. K. Sun, B. S. Du, F. Liu, P. Z. Si, M. X. Zhao, X. Y. Zhang, G. M. Shi,Influence of annealing on the microwave-absorption properties of Ni/TiO2 nanocomposites, Journal of Alloys and Compounds, 557, 553(2013)
17 Z. Han, D. Li, X. G. Liu, D. Y. Geng, J. Li, Z. D. Zhang,Microwave-absorption properties of Fe(Mn)/ferrite nanocapsules, Journal of Physics D: Applied Physics, 42, 055008(2009)
18 WO Songtao,SHEN Jie, CAI Zhenwei, CUI Xiaoli, ZHANG Qun, YANG Xiliang, ZHANG Zhuangjian, Influence of Sb on TiO2 thin films grown by DC reactive magnetron sputtering, Vacuum Science and Tecnology, 24(3), 182(2004)
18 (沃松涛, 沈 杰, 蔡臻炜, 崔晓莉, 张 群, 杨锡良, 章壮健, Sb对直流反应磁控溅射制备TiO2薄膜的影响, 真空科学与技术, 24(3), 182(2004))
19 XIA Tian,CAO Wanghe, TIAN Ying, FU Yao, ZHOU Lixin, The preparation and photoluminescence study of anatase nanometer titania thin films, Journal of Functional Materials, 36(1), 100(2005)
19 (夏 天, 曹望和, 田 莹, 付 姚, 周立新, 锐钛矿相TiO2纳米薄膜的制备及光致发光研究, 功能材料, 36(1), 100(2005))
20 GAO Jiwei,DING Xingeng, HUANG Sunyu, YANG Hui, Effect of heat treatment temperature on structure and optical performance of TiO2 Photocatalyst, Rare Metal Materials and Engineering, 33(3), 52(2004))
20 (高基伟, 丁新更, 黄顺余, 杨 辉, 热处理温度对TiO2结构和光学性能的影响, 稀有金属材料与工程, 33(3), 52(2004))
21 HOU Qingyu,ZHANG Yue, ZHANG Tao, First principles research on the effect of high oxygen vacancy concentration in anatase TiO2 on mott phase transition, absorption spectrum Einstein shift and life-time of electrons, Acta Physica Sinica, 57(3), 1862(2008))
21 (侯清玉, 张 跃, 张 涛, 高氧空位浓度对锐钛矿TiO2莫特相变和光谱红移及电子寿命影响的第一性原理研究, 物理学报, 57(3), 1862(2008))
22 X. G. Liu, S. W. Or, S. L. Ho, C. C. Cheung, M. L. Chung, Z. Han, D. Y. Geng, Z. D. Zhang,Full X–Ku band microwave absorption by Fe(Mn)/Mn7C3/C core/shell/shell structured nanocapsules, Journal of Alloys and Compounds, 509, 9071(2011)
23 X. G. Liu, S. W. Or, Y. P. Sun, W. H. Lia, Y. Z. He, G. H. Zhu, C. G. Jin, Q. Yan, Y. H. Lv, S. L. Ho, S. S. Zhao,Influence of a graphite shell on the thermal, magnetic and electromagnetic characteristics of Fe nanoparticles, Journal of Alloys and Compounds, 548, 239(2013)
24 X. L. Shi, M. S. Cao, J. Yuan, Q. L. Zhao, Y. Q. Kang, X. Y. Fang, and Y. J. Chen,Nonlinear resonant and high dielectric loss behavior of CdS/α-Fe2O3 heterostructure nanocomposites, Applied Physics Letter, 93, 183118(2008)
25 X. G. Liu, J. J. Jiang, D. Y. Geng, B. Q. Li, Z. Han,Dual nonlinear dielectric resonance and strong natural resonance in Ni/ZnO nanocapsules, Applied Physics Letter, 94, 053119(2009)
26 X. G. Liu, D. Y. Geng, Z. D. Zhang,Microwave-absorption properties of FeCo microspheres self-assembled by Al2O3-coated FeCo nanocapsules, Applied Physics Letter, 92, 243110(2008)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
[8] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[9] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[10] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[11] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[12] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[13] SUN Maolin, GONG Zhen, WANG Shiwen, YIN Hang, LI Ruiwu, ZHANG Zheng, LI Yutong, WU Fayu. Optical and Electrical Properties of Oxygen-controlled In2O3 Film[J]. 材料研究学报, 2021, 35(5): 394-400.
[14] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[15] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
No Suggested Reading articles found!