Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (4): 286-292    DOI: 10.11901/1005.3093.2013.731
Current Issue | Archive | Adv Search |
Synthesis and Physicochemical Characteristics of Acetylated Corn Starch under Microwave Assistance
Hao ZHANG1,2,Jiankun WANG1,2,**(),Rui WANG1,2,Yongchun DONG1
1. School of Textiles, Tianjin Polytechnic University, Tianjin 300387
2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tianjin Polytechnic University, Tianjin 300387
Cite this article: 

Hao ZHANG,Jiankun WANG,Rui WANG,Yongchun DONG. Synthesis and Physicochemical Characteristics of Acetylated Corn Starch under Microwave Assistance. Chinese Journal of Materials Research, 2014, 28(4): 286-292.

Download:  HTML  PDF(1542KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Native corn starch (NCS) was acetylated by a microwave-assisted method using vinyl acetate (VAc) as an acetylating agent and potassium carbonate K2CO3 as a catalyst. Acetylated corn starch (ACS) was characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The physicochemical properties, adhesive properties and biodegradability of ACS were systematically investigated. The results show that the physicochemical properties of ACS were improved compared with NCS: the hydration capacity raised, solubility, swelling power and paste clarity increased; the intrinsic viscosity, apparent viscosity decreased, rheological property were improved; the syneresis decreased, anti-retrogradation were enhanced. The adhesion to polyester/cotton fibers of ACS was enhanced, which compensated for the insufficient adhesion to hydrophobic fibers of native starch. BOD5/CODcr value of ACS was outclasses that of PVA-205.

Key words:  organic polymer materials      acetylated corn starch      microwave irradiation      physicochemical properties      biodegradation     
Received:  03 October 2013     
Fund: *Supported by National Natural Science Foundation of China No. 20773093, and Science and Technique Development Program of Higher Education of Tianjin No. ZD200720.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2013.731     OR     https://www.cjmr.org/EN/Y2014/V28/I4/286

Fig.1  FT-IR spectra of NCS (a) and ACS (b)
Fig.2  SEM images of NCS (a) (b) and ACS (c) (d)
Fig.3  X-ray diffraction spectra of NCS (a) and ACS (b)
AGU:VAc/mol:mol Acetylcontent/% DS Intrinsic viscosity/mLg-1 Apparent viscosity/MPas
NCS 154.95 138.33
ACS#1 12:1 1.28 0.049 119.53 42.67
ACS#2 8:1 2.01 0.077 122.09 50.33
ACS#3 6:1 2.48 0.096 123.46 53.67
ACS#4 4:1 3.09 0.120 126.49 64.00
ACS#5 3:1 3.36 0.131 127.95 68.33
Table 1  Intrinsic viscosity and apparent viscosity and NCS and ACS
NS ACS#1 ACS#2 ACS#3 ACS#4 ACS#5
Solubility /% 13.29 15.39 16.20 18.67 19.66 20.48
Swelling power /g·g-1 17.98 22.23 25.60 26.57 29.25 31.54
Clarity /% 11.14 14.09 15.84 17.02 17.88 18.15
Table 2  Solubility, swelling power and paste clarity of NCS and ACS
Fig.4  Retrogradation curves of NCS and ACS
NS PVA205 ACS#1 ACS#2 ACS#3 ACS#4 ACS#5
Adhesive force /N 62.90 73.53 69.37 72.87 76.80 78.27 79.53
Table 3  Adhesive properties of NCS, ACS and PVA-205 to polyester/cotton blended roving
CODcr BOD5 B/C
NCS 823 270 0.328
ACS#1 815 289 0.355
ACS#2 819 283 0.346
ACS#3 822 271 0.330
PVA-205 1480 13 0.009
Table 4  Biodegradability index of NCS, ACS and PVA-205
1 J. R. Huang, H. A. Schols, Z. Y. Jin, E. Sulmann, A. G. J. Voragen,Characterization of differently sized granule fractions of yellow pea, cowpea and chickpea starches after modification with acetic anhydride and vinyl acetate, Carbohyd. Polym., 76(1), 11(2007)
2 R. L. Shogren, A. Biswas,Facile Route to Anionic Starches—Acetylation of starch with vinyl acetate in imidazolium ionic liquids and characterization of acetate distribution, Carbohyd. Polym., 81(1), 149(2010)
3 Y. J. Wang, L. F. Wang, Characterization of acetylated waxy maize starches prepared under catalysis by different alkali and alkaline-earth hydroxides, Starch-St?rke, 54(1), 25(2002)
4 P. D. Mbougueng, D. V. Tenin, J. Scher, C. Tchiegang,Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches, J. Food Eng., 108(2), 320(2012)
5 H. A. M. Wickramasinghe, K. Yamamoto, H. Yamauchi, T. Noda,Effect of low level of starch acetylation on physicochemical properties of potato starch, Food Sci. Biotechnol., 18(2), 118(2009)
6 X. Li, W. Y. Gao, Q. Q. Jiang, L. Q. Huang, C. X. Liu, Study on the morphology, crystalline structure, and thermal properties of Fritillaria ussuriensis Maxim— Starch acetates with different degrees of substitution, Starch-St?rke, 63(1), 24(2011)
7 B. Daramola, G. O. Adegoke,Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches, J. Food Agric. Environ., 5(2), 50(2007)
8 C. Fringant, M. Rinaudo, N. Gontard, S. Guilbert, H. Derradji, A biogradable starch based coating to waterproof hydrophilic materials, Starch-St?rke, 50(7), 292(1998)
9 J. Juhanoja, H. Fagerholm, S. Hyvarinen, S. Peltonen, K. Kataja, H. Lampinen, P. Fardim,ToF-SIMS characterization of modified starch on fine and LWC base papers, Nord. Pulp. Pap. Res. J., 22(1), 131(2007)
10 A. V. Singh, L. K. Nath,Evaluation of acetylated moth bean starch as a carrier for controlled drug delivery, Int. J. Biol. Macromol., 50(2), 362(2012)
11 K. P. R. Chowdary, G. V. Radha,Synthesis, characterization and evaluation of starch acetate as microencapsulating agent for controlled release of glipizide, Int. J. Biol. Macromol., 23(5), 1914(2011)
12 J. Chen, Q. Wang, Z. Z. Hua, G. C. Du,Research and application of biotechnology in textile industries in China, Enzyme. Microb. Technol., 40(7), 1651(2007)
13 A. V. Singh, L. K. Nath, M. Guha, Microwave assisted synthesis and characterization of Sago starch-g-acrylamide, Starch-St?rke, 63(11), 740(2011)
14 V. Singh, A. Tiwari, S. Pandey, S. K. Singh, Microwave-accelerated synthesis and characterization of potato starch-g-poly(acrylamide), Starch-St?rke, 58(10), 536(2006)
15 M. Bushra, X. Y. Xu, X. Y. Pan, Z. Zhang, G. C. Du, Microwave assisted acetylation of mung bean starch and the catalytic activity of potassium carbonate in free-solvent reaction, Starch-St?rke, 65(3-4), 236(2013)
16 V. D. Athawale, V. Lele, Microwave assisted acetylation of mung bean starch and the catalytic activity of potassium carbonate in free-solvent reaction, Starch-St?rke, 52(6-7), 205(2000)
17 A. Biswas, R. L. Shogren, G. Selling, J. Salch, J. J. Willett, C. M. Buchanan,Rapid and environmentally friendly preparation of starch esters, Carbohyd. Polym., 74(1), 137(2008)
18 N. Singh, J. Singh, L. Kaur, N. S. Sodhi, B. S. Gill,Morphological, thermal and rheological properties of starches from different botanical sources, Food Chem., 81(2), 219(2003)
19 O. V. López, N. E. Zaritzky, M. A. García,Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity, J. Food Eng., 100(1), 160(2010)
20 S. Saartrat, C. Puttanlek, V. Rungsardthong,Paste and gel properties of low-substituted acetylated canna starches, Carbohyd. Polym., 61(2), 211(2005)
21 H. Chi, K. Xu, X. L. Wu, Q. Chen, D. H. Xue, C. L. Song, W. D. Zhang, P. X. Wang,Effect of acetylation on the properties of corn starch, Food Chem., 106(3), 923(2008)
22 C. I. K. Diop, L. I. Hailong, B. J. Xie, J. Shi,Effects of acetic acid/acetic anhydride ratios on the properties of corn starch acetates, Food Chem., 126(4), 1662(2011)
23 G. Lewandowicz, T. Jankowski, J. Fornal,Effect of microwave radiation on physico-chemical properties and structure of cereal starches, Carbohyd. Polym., 42(2), 193(2000)
24 N. S. Sodhi, N. Singh,Characteristics of acetylated starches prepared using starches separated from different rice cultivars, J. Food Eng., 70(1), 117(2005)
25 J. Singh, L. Kaur, N. Singh, Effect of acetylation on some properties of corn and potato starches, Starch-St?rke, 56(12), 586(2004)
26 N. Singh, D. Chawla, J. Singh,Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch, Food Chem., 86(4), 601(2004)
27 F. Han, M. Z. Liu, H. H. Gong, S. Y. Lv, B. L. Ni, B. Zhang,Synthesis, characterization and functional properties of low substituted acetylated corn starch, Int. J. Biol. Macromol., 50(4), 1026(2012)
28 Z. F. Zhu, M. L. Li, E. Q. Jin,Effect of an allyl pretreatment of starch on the grafting efficiency and properties of allyl starch-g-poly(acrylic acid), J. Appl. Polym. Sci., 112(5), 2822(2009)
29 WANG Jiankun,HAN Dawei, LV Hairong, Graft modification of starch by rheological phase method based on damping characteristic, Chinese Journal of Materials Research, 24(4), 348(2010)
29 (王建坤, 韩大伟, 吕海荣, 基于阻尼特性的淀粉流变相接枝改性, 材料研究学报, 24(4), 348(2010))
30 N. Teramoto, T. Motoyama, R. Yosomiya, M. Shibata,Synthesis, thermal properties, and biodegradability of propyl-etherified starch, Eur. Polym. J., 39(2), 255(2003)
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!