Please wait a minute...
Chinese Journal of Materials Research  2014, Vol. 28 Issue (11): 801-808    DOI: 10.11901/1005.3093.2014.226
Current Issue | Archive | Adv Search |
Determination of Tension Softening Relationship of Concrete from Crack Length Measurement
Sunyiming LUO,Jun ZHANG(),Jiahe WANG
Department of Civil Engineering, Tsinghua University, Beijing 100084
Cite this article: 

Sunyiming LUO,Jun ZHANG,Jiahe WANG. Determination of Tension Softening Relationship of Concrete from Crack Length Measurement. Chinese Journal of Materials Research, 2014, 28(11): 801-808.

Download:  HTML  PDF(2518KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A method for acquiring the tensile softening relationship of concrete was presented, which is based on the measurement of flexural crack length using strain gauge and then through fitting the theoretical calculated load and the experimentally determined load for the same cracking length to obtain the tensile softening (s-w) relationship. As long as the s-w relationship is known, the cracking strength, tensile strength, fracture energy and characteristic length of brittleness can be derived. The tension softening relationship of three kinds of fast hardening concretes was obtained using above method. The results show that the cracking strength, tensile strength and fracture energy increase with the increasing compressive strength of concrete, while the characteristic length of brittleness decreases. Therefore, the obtained s-w relationship can be used for fracture analyses of concrete structures.

Key words:  foundational discipline in materials science      bridging stress      crack length      tensile softening relationship      fracture parameters     
Received:  06 May 2014     
Fund: *Surported by National Science Foundation of China Program No.51278278.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.226     OR     https://www.cjmr.org/EN/Y2014/V28/I11/801

Fig.1  Crack propagation of concrete beam under bending load and cohesive force
Fig.2  Nodes of the fracture surface and distribution of the cohesive force
No. Kg/m3 7 days/28 days
Cement Water Sand Stone Fly ash Silica fume Compressive strength/MPa Elastic modulus/GPa
SC30 295 200 750 1050 75 - 26.2/32.3 26.9/31.7
SC50 378 189 700 1020 95 - 37.0/52.5 31.4/36.6
SC80 541 180 600 1150 - 61 62.0/82.8 40.9/42.1
Table 1  Mix Proportions and Mechanical Properties of Concrete
Fig.3  Crack length measurement
Fig.4  Strains versus time diagrams
Fig.5  Crack length versus time diagram
Fig.6  Load versus crack length diagram
Fig.7  Load versus crack length diagrams of SC concrete
Fig.8  Stress-crack width relationship of SC concrete
Fig.9  Comparison between calculated P–CMOD curves and test results
No. ?sfc(MPa) ?st(MPa) Gf(J/m2) lch(cm)
SC30-7D 1.58 1.96 34.75 24.35
SC50-7D 2.07 2.26 42.89 26.33
SC80-7D 2.94 3.61 63.51 19.50
SC30-28D 1.94 2.91 54.12 20.31
SC50-28D 2.73 3.18 73.07 23.90
SC80-28D 4.02 4.46 82.98 19.06
Table 2  Fracture parameters of three series of concrete
1 Kaplan F. M.,Crack propagation and fracture of concrete, Journal of the American of Concrete Institute, Proceedings, 58(5), 591(1961)
2 Strange P. C., Bryant A. H.,Experimental tests on concrete fracture, ASCE Journal of the Engineering Mechanics, 105, 337(1979)
3 Zhang Jun,Liu Qian, Determination of Concrete Fracture Parameters from a Three-Point Bending Test, Tsinghua Science and Technology, 8(6), 726(2003)
4 ZHANG Jun,WANG Lin, SUN Ming, LIU Qian, Effect of coarse/fine aggregate ratio and cement matrix strength on fracture parameters of concrete, Engineering Mechanics, 21(1), 136(2004)
4 (张 君, 王 林, 孙 明, 刘 骞, 粗细骨料比例和水泥石强度对混凝土断裂参数的影响, 工程力学, 21(1), 136(2004))
5 Hillerborg A., Modeer M.,Petersson P-E., Analysis of crack formation and crack growth by means of fracture mechanics and finite elements, Cement and Concrete Research, 6, 773(1976)
6 Petersson P-E.,Crack growth and development of fracture zones in plain concrete and similar materials, Report TVBM-1006, Division of Building Materials, Lund Institute of Technology(1981)
7 Schorn H.,Berger-bocker T., Test method for determining process zone position and fracture energy of concrete, Experimental Techniques, 29, 29(1989)
8 Li Z., Kulkarni S.M., Shah S.P.,New test methods for obtaining softening response of unnotched concrete specimen under uniaxial tension, Experimental Mechanics, 33, 191(1993)
9 Li Qingbin,Farhad Ansari, High strength concrete in uniaxial tension, ACI Materials Journal, 97(1), 49(2000)
10 Gopalaratnam V. S., Shah S. P.,Softening response of plain concrete in direct tension, ACI Journal, 82(3), 310(1985)
11 Wang Youjiang,Li Victor C., Backer Stanley, Experimental determination of tensile behavior of fiber reinforced concrete, ACI Material Journal, 87(5), 461(1990)
12 Reinhardt H. W.,Cornelissen A. W., Hordijk K. A., Tensile tests and failure analysis of concrete, Journal of Structure Engineering, 112, 2462(1986)
13 Carpinteri A., Chiaia B., Ferro G.,Scale dependence of tensile strength of concrete specimens: a multifractal approach, Magazin of Concrete Research, 50(3), 237(1998)
14 Zhang Jun,Leung Christopher K. Y., Xu Shilang, Evaluation of Fracture Parameters of Concrete from Bending Test, Materials and Structures, 43(6), 857(2010)
15 Cox B. N., Marshall D. B.,Stable and unstable solutions for bridges cracks in various specimens, Acta Metall Mater, 39(4), 579(1991)
16 ZHANG Lijuan,ZHANG Yajun, GAO Lingqing, Review on measurement methods of surface crack length. Development and Application of Materials, 5(10), 75(2009)
16 (张利娟, 张亚军, 高灵清, 表面裂纹长度的测量方法, 材料开发与应用, 5(10), 75(2009))
17 XU Shilang,ZHAO Guofan, The investigation on the propagation process of a crack in concrete by means of photoelastic coating, Journal of Hydroelectric Engineering, 3, 8(1991)
17 (徐世烺, 赵国藩, 光弹性贴片法研究混凝土裂缝扩展过程, 水力发电学报, 3, 8(1991))
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[6] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[7] Li HUANG. Stability and Heat storage Capacity of Phase Change Emulsion Paraffin/Water[J]. 材料研究学报, 2017, 31(10): 789-795.
[8] Liang ZHU,Jing WANG,Xiaohui LI,Hongbo SUO,Yiliang ZHANG. R-S-N Mathematical Model Based on TC18 by BW High Cycle Fatigue Test Data[J]. 材料研究学报, 2015, 29(9): 714-720.
[9] Yang CHEN,Cheng QIAN,Zhitang SONG,Guoquan MIN. Measurement of Compressive Young’s Modulus of Polymer Particles Using Atomic Force Microscopy[J]. 材料研究学报, 2014, 28(7): 509-514.
[10] Guiqin YU,Jianjun LIU,Yongmin LIANG. Synthesis and Tribological Performance of Guanidinium Ionic Liquids as Lubricants for Steel /Steel Contacts[J]. 材料研究学报, 2014, 28(6): 448-454.
[11] Xiaogang WANG,Yueyi LI,Hailan WANG,Cunlong ZHOU,Qinxue HUANG. Numerical Modeling for Roller Leveling Process of Bimetal-Plate[J]. 材料研究学报, 2014, 28(4): 308-313.
[12] Wu YAO,Mengxue WU,Yongqi WEI. Determination of Reaction Degree of Silica Fume and Fly Ash in a Cement - silica fume - fly ash Ternary Cementitious System[J]. 材料研究学报, 2014, 28(3): 197-203.
[13] Ruwu WANG,Jing LIU,Zhanghua GAN,Chun ZENG,Fengquan ZHANG. Crystallization Kinetics of Amorphous Alloys Fe73.5Si13.5-xGexB9Cu1Nb3(x=3, 6)[J]. 材料研究学报, 2014, 28(3): 204-210.
[14] Lei LI,Ke QIN,Haitao ZHANG,Zhihao ZHAO,Qingfeng ZHU,Yubo ZUO,Jianzhong CUI. Crystallographic Features of a Solidified Hypoeutectic Zn-4.45%Al Alloy[J]. 材料研究学报, 2014, 28(2): 126-132.
[15] Yanen WANG,Qinghua WEI,Mingming YANG,Shengmin WEI. Molecular Dynamics Simulation of Mechanical Properties and Surface Interaction for HA/NBCA[J]. 材料研究学报, 2014, 28(2): 133-138.
No Suggested Reading articles found!