Please wait a minute...
Chinese Journal of Materials Research  2013, Vol. 27 Issue (5): 501-507    DOI:
Current Issue | Archive | Adv Search |
Analytical Calculation of Average Temperature in Plastic Region of Dissimilar Titanium Joints at Steady-state of CDFW
WANG Limin1, 2** LI Jinglong2 XIONG Jiangtao2 WEI Yanni2 ZHANG Fusheng2
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
2. Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi’an 710072
Cite this article: 

WANG Limin, LI Jinglong, XIONG Jiangtao, WEI Yanni, ZHANG Fusheng. Analytical Calculation of Average Temperature in Plastic Region of Dissimilar Titanium Joints at Steady-state of CDFW. Chinese Journal of Materials Research, 2013, 27(5): 501-507.

Download:  PDF(1125KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

For the dissimilar joint of continuous drive friction welding, an analytical solution was proposed to predict the steady-state average temperature in the plastic region, which was resorted to the distribution coefficient of welding heat. The steady-state average temperature in the plastic region of two dissimilar joint TC4/TC17 and TC11/TC17 were calculated in the following cases: constant rotation speed but different welding pressures and constant welding pressure but different rotation speeds. The calculated average temperature was compared with the experimental temperature data. The results show that when the rotational speed is holding constant, the average temperature decreased with the increasing welding pressures, while when the welding pressure is holding constant, the average temperature increased with the increasing rotational speeds. When the welding parameter is holding constant, the average temperature of the TC17 side of dissimilar joints are always lower than that of the other side, whether TC4/TC17 or TC11/TC17 joint. The calculated temperature and the actual temperature agree well and the difference between them is less than 7% which shows the accuracy of the analytical solution.

Key words:  synthesizing and processing technics      average temperature of continuous drive friction welding      analytical model      TC4/TC17      TC11/TC17     
ZTFLH:  TG174  

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2013/V27/I5/501

[1] YAN Fuzhao, LI Jing, XIONG Liangyin, LIU Shi. Preparation and Microstructure of FeCr-ODS Ferrite Alloy Fabricated by Oxidation and Powder Forging[J]. 材料研究学报, 2022, 36(6): 461-470.
[2] WANG Yongpeng, JIA Zhihao, LIU Mengzhu. Feasibility of Electrospun 2-Dimensional CdO Nanorods for Application in Glucose Sensors[J]. 材料研究学报, 2021, 35(1): 53-58.
[3] XIA Ao, ZHAO Chenpeng, ZENG Xiaoxiong, HAN Yuepeng, TAN Guoqiang. Preparation and Electrochemical Properties of B-doped MnO2[J]. 材料研究学报, 2021, 35(1): 36-44.
[4] CAI Guodong, CHENG Xiyun, WANG Dian. Preparation of 316L Stainless Steel Products by Fused Deposition Model 3D-printing and Effect of La on Morphology and Distribution of Precipitates[J]. 材料研究学报, 2020, 34(8): 635-640.
[5] XIE Lilan, YANG Dongsheng, LING Jing. Synthesis and Formation Mechanism of Lithium Battery High-Capacity Anode Material TiNb2O7[J]. 材料研究学报, 2020, 34(5): 385-391.
[6] MA Weijie,YANG Xirong,LUO Lei,LIU Xiaoyan,HAO Fengfeng. Dynamic Recrystallization Model of Ultrafine Grain Pure Titanium Prepared by Combined Deformation Process[J]. 材料研究学报, 2020, 34(3): 217-224.
[7] JIANG Jufu, WANG Ying, XIAO Guanfei, DENG Teng, LIU Yingze, ZHANG Ying. Influence of Modification, Refinement and Heat Treatment on Mechanical Properties of A356 Al-alloy Components Prepared by Squeeze Casting[J]. 材料研究学报, 2020, 34(12): 881-891.
[8] YANG Zhanxin, WU Qiong, REN Yiqiao, QU Kaikai, ZHANG Zhehao, ZHONG Weili, FAN Guangning, QI Guochao. Massive Preparation and Supercapacitor Performance of Layered Ti3C2[J]. 材料研究学报, 2020, 34(11): 861-867.
[9] Bin QIN,Qun WANG,FuMeng WANG,LiE JIN,XiaoLing XIE,Qing CAO. Preparation of Needle Cokes with High Electrical Conductivity and Low Coefficient of Thermal Expansion[J]. 材料研究学报, 2019, 33(1): 53-58.
[10] Qiang WANG, Ruiting HAO, Qichen ZHAO, Sijia LIU. Preparation of Cu2ZnSnS4 Thin Film Solar Cells by Cyclically and Sequentially Sputtering Three Sulfide-targets[J]. 材料研究学报, 2018, 32(6): 409-414.
[11] Yanwei LI, Zhiping XIE, Canzheng LIU, Jinhuan YAO, Jiqiong JIANG, Jianwen YANG. Preparation and Lithium Storage Performance of Two Dimensional Fold-like V2O5 Nanomaterial[J]. 材料研究学报, 2017, 31(5): 374-380.
[12] Chengdong LI, Zhilei YAO, Ju LI, Jin XU, Xin XIONG. Preparation and Electrochemical Performance of LaF3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as Cathode Material for Lithium-ion Batteries[J]. 材料研究学报, 2017, 31(5): 394-400.
[13] TANG Zhaohui, DING Xueyong, DONG Yue, LIU Chenghong, WEI Guo. Influence of w(MgO) on Viscous Flow Property of High Ti-containing Blast Furnace Slag[J]. 材料研究学报, 2016, 30(6): 443-447.
[14] TANG Xianyi, WEI Xiaohui, XU Deping, ZHANG Haiyong, HE Xin, XIONG Chu'an, TANG Hanying. Removal of QI from Medium-temperature Coal Tar Pitch and Preparation of Needle Coke through Carbonization[J]. 材料研究学报, 2016, 30(6): 448-456.
[15] ZHANG Juan, CHEN Xiujuan, ZHANG Penglin. Synthesis and Electrochemical Properties of Flower-like SnS2 by Triton X-100 Assisted Hydrothermal Method as Negative Electrode Material for Lithium Ion Batteries[J]. 材料研究学报, 2016, 30(1): 63-67.
No Suggested Reading articles found!