Please wait a minute...
Chinese Journal of Materials Research  2013, Vol. 27 Issue (3): 225-230    DOI:
Original Article Current Issue | Archive | Adv Search |
Influence of Stress on Damping Behavior of FeCrMoCu Alloy
HU Xiaofeng* LIU Shuwei LI Xiuyan RONG Lijian
(Institute of Metal Research, Chinese Academy of Science, Shenyang 110016)
Cite this article: 

HU Xiaofeng, LIU Shuwei, LI Xiuyan, RONG Lijian. Influence of Stress on Damping Behavior of FeCrMoCu Alloy. Chinese Journal of Materials Research, 2013, 27(3): 225-230.

Download:  PDF(3842KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three point bending and dual cantilever model of dynamic mechanical analyzer (DMA) were used to measure the damping capacity of FeCrMoCu alloy, and ABAQUS software was selected to analysis the stress distribution of sample during damping test. The influence of stress on damping behavior of FeCrMoCu alloy was studied. The results show that there obviously exists stress concentration due to pre- load during damping test, which will cause the move of magnetic domain wall. With increasing stress, the mobility of domain wall will be lowered and the damping capacity of FeCrMoCu alloy decreases obviously. There is obvious influence of stress loading mode on damping behavior of FeCrMoCu alloy. For dual cantilever model, there always exists compressive stress at the upper and lower surface of test sample and a greater stress is needed to saturate domain structure. Therefore, the strain amplitudeεmax is bigger and the maximum damping capacity Q-1max is lower. While 3 point bending model was used to test damping capacity, in the upper and lower surface of sample there exist compressive stress and tensile stress respectively. During damping test, the imposed stress will lead to overlay effect. The magnetic domain structure will saturate at lower strain amplitude εmax and the maximum damping capacity Q-1max is higher.

Key words:  metallic materials      FeCrMoCu      damping alloy      ABAQUS      stress      dynamic mechanical analyzer (DMA)     
Received:  27 February 2013     
ZTFLH:  TG135  
About author:  *To whom correspondence should be addressed, Tel: (024)83978883, E-mail: xfhu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2013/V27/I3/225

1 I. S. Golovin, Mechanism of damping capacity of high-chromium steels and α-Fe and its dependence on some external factors, Metall. Mater. Trans. A, 25(1), 111(1994)
2 A. Karimi, P. H. Giauque, J. L. Martin, Magnetomechanical damping in plasma sprayed iron-chromium based coatings, J. Appl. Phys., 79(3), 1670(1996)
3 HU Xiaofeng, LI Xiuyan, ZHANG Bo, RONG Lijian, LI Yiyi, Influences of additions of Nb, Ti and Cu on damping capacity and corrosion resistance of Fe-13Cr-2.5Mo alloy, Acta Metall. Sin., 45(6), 717(2009)
(胡小锋, 李秀艳, 张 波, 戎利建, 李依依, Nb, Ti和Cu对Fe--13Cr--2.5Mo合金阻尼与腐蚀性能的影响, 金属学报, 45(6), 717(2009))
4 V. F. Coronel, D. N. Beshers, Magnetomechanical damping in iron, J. Appl. Phys., 64(4), 2006(1988)
5 D. Pulino-Sagradi, M. Sagradi, A. Karimi, J. L. Martin, Damping capacity of Fe-Cr-X high-damping alloys and its dependence on magnetic domain structure, Scripta Mater., 39(2), 131(1998)
6 T.S. Ge, Theoretical Principle of Solid Internal Friction - relaxation and Structure of Grain Boundary (Beijing, Science press, 2000) p.40)
(葛庭燧, 固体内耗理论基础-晶界弛豫与晶界结构 (北京, 科学出版社, 2000) p. 40)
7 A. Riviere, Measurement of high damping: techniques and analysis, J. Alloys Compd., 355(1-2), 201(2003)
8 I. G. Ritchie, Z. L. Pan, High-damping metals and alloys, Metall. Trans. A, 22(3), 607(1991)
9 J. Zhang, R. J. Perez, C. R. Wong, E. J. Lavernia, Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites, Mater. Sci. Eng. R, 13(8), 325(1994)
10 LIN Renrong, LIU Fang, CAO Mingzhou, YANG Rui, Influence of annealing and substitution elements on damping capacity and strength of Fe-Cr-Al based alloys, Acta Metall. Sin., 41(9), 958(2005)
(林仁荣, 刘 芳, 曹名洲, 杨 锐, 退火及置换元素对Fe-Cr-Al基合金阻尼性能及强度的影响, 金属学报, 41(9), 958(2005))
11 S. H. Chang, S. K. Wu, Isothermal effect on internal friction of Ti50Ni50 alloy measured by step cooling method in dynamic mechanical analyzer, J. Alloys Compd., 459(1-2), 155(2008)
12 F. X. Yin, S. Takamori, Y. Ohsawa, A. Sato, K. Kawahara, The effects of static strain on the damping capacity of high damping alloys, Mater. Trans., 43(3), 466(2002)
13 X. F. Hu, X. Y. Li, B. Zhang, L. J. Rong, Y. Y. Li, Magnetic domain structure and damping capacity of Fe-13Cr-2.5Mo alloy, Mater. Sci. Eng. B, 171(1-3), 40(2010)
14 Z. C. Zhou, J. N. Wei, F. S. Han, Influences of heat treatment and grain size on the damping capacity of an Fe-Cr-Al alloy, Phys. Status Solidi A, 191(1), 89(2002)
15 H. Masumoto, S. Sawaya, M. Hinai, On the damping capacity of Fe-Cr alloys, Trans. Japan Inst. Met., 20(8), 409(1979)
16 X. F. Hu, S. W. Liu, X.Y. Li, B. Zhang, L. J. Rong, F. X. Yin, Y. Y. Li, Influence of static stress on damping behavior in Fe-15Cr and Fe-8Al ferromagnetic alloys, Mater. Sci. Eng. A, 528(16-17), 5491(2011)
17 G. W. Smith, J. R. Birchak, Internal stress distribution theory of magnetomechanical hysteresis-an extension to include effects of magnetic field and applied stress, J. Appl. Phys., 40(13), 5174(1969)
18 G. W. Smith, J. R. Birchak, Effect of internal stress distribution on magnetomechanical damping, J. Appl. Phys., 39(5), 2311(1968)
19 ZHONG Wending, Ferromagnetism (Volume II) (Beijing, Science Press, 1987), p.139
(钟文定, 铁磁学(中册) (北京, 科学出版社, 1987) p.139)
20 R. Schaller, G. Fantozzi, G. Gremaud, Mechanical Spectroscopy Q-1 2001 with Applications to Materials Science (Zuerich, Trans Tech Publications Ltd, 2001) p.461

[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
No Suggested Reading articles found!