Please wait a minute...
Chin J Mater Res  2012, Vol. 26 Issue (2): 119-124    DOI:
论文 Current Issue | Archive | Adv Search |
Kinetic Monte Carlo Simulation of Thin Film Growth Including Two--dimensional Ehrlich--Schwoebel Barrier
ZHU Yiguo,RONG Haibo
State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023
Cite this article: 

ZHU Yiguo RONG Haibo. Kinetic Monte Carlo Simulation of Thin Film Growth Including Two--dimensional Ehrlich--Schwoebel Barrier. Chin J Mater Res, 2012, 26(2): 119-124.

Download:  PDF(814KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A kinetic Monte Carlo model describing the three–dimensional thin film growth on square lattice substrates was presented, in which the two–dimensional Ehrlich–Schwoebel barrier for an adatom to diffuse down a surface step was taken into account. Three principle dynamic processes, namely deposition, diffusion and re–evaporation were included in the description of surface motion of the adatoms. It is considered that these three dynamic processes are interact on each other and will occur randomly according to their rates. Three growth modes and corresponding island morphologies under different growth conditions were simulated. By analysing the simulate results, It is educed that the important influence of Ehrlich–Schwoebel Barrier on surface morphology, and under the action of Ehrlich–Schwoebel Barrier, the temperature of substrate and deposition rate also play an important role in thin film growth modes.
Key words:  foundational discipline in materials science      thin film growth      Kinetic Monte Carlo model      two–dimensional ehrlich–schwoebel barrier      morphology     
Received:  19 April 2010     
ZTFLH: 

O484

 
Fund: 

Supported by the National Basic Research Program under the Grant 2005CB321704 , National Natural Science Foundation of China No.10925209 and the Fundamental Research Funds for the Central Universities No.DUT10LK42.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2012/V26/I2/119

1 WANG Enge, Atomic–scale study of kinetics in film growth(I), Progress in Physics, 23(1), 1(2003)

(王恩哥, 薄膜生长中的表面动力学(I), 物理学进展, 23(1), 1(2003))

2 MAO Huibing, JING Weiping, YU Jianguo, WANG Jiqing, WANG Li, DAI Ning, Kinetic Monte Carlo simulation of the epitaxial growth mechanism on the vicinal surface, Acta Physica Sinica, 5510), 5435(2006)

(毛惠兵, 景为平, 俞建国, 王基庆, 王 力, 戴 宁, 邻晶面外延生长机制的动力学Monte Carlo模拟, 物理学报, 5510), 5435(2006))

3 G.Enrlich, F.G.Hudda, Atomic view of surface self–diffusion: Tungsten on tungsten, J. Chem. Phys., 44, 1039(1966)

4 R.L.Schwoelbel, E.J.Shipesy, Step motion on crystal surfaces, J. Appl. Phys., 37, 3682(1966)

5 J.K.Zuo, J.F.Wendelken, Evolution of Mound Morphology in Reversible Homoepitaxy on Cu(100), Phys. Rev. Lett., 78, 2791(1997)

6 F.M.Wu, H.J.Lu, Z.Q.Wu, Simulation of multilayer homoepitaxial growth on Cu(100) surface, Chinese Physics, 15(4), 807(2006)

7 S.J.Liu, Hanchen Huang, C.H.Woo, Schwoebel–Ehrlich barrier: from two to three dimensions, Appl. Phys. Lett., 80, 3295(2002)

8 S.J.Liu, E.G.Wang, C.H.Woo, Hanchen Huang, Three–dimensional Schwoebel–Ehrlich barrier, J. Compu. Aided Materials Design, 7, 195(2001)

9 LI Jiayang, LI Rongwu, SUN Jundong, LIU Shaojun, Computation of the Ehrlich–Schwoebel barrier to adatom diffusion in heteroepitaxial systems, Acta Physica Sinica, 56, 446(2007)

(李佳阳, 李荣武, 孙俊东, 刘绍军, 异质扩散过程中ES势垒的计算, 物理学报, 56, 446(2007))

10 M.G.Lagally, Z.Y.ZHANG, Materials science: Thin–film cliffhanger, 417, 907(2002)

11 ZHU Yiguo, Three dimensional Monte Carlo model of thin film growth, 23(6), 640(2009)

(朱祎国, 薄膜生长的三维蒙特卡罗模型, 材料研究学报,  23(6), 640(2009))

12 ZHANG Peifeng, ZHENG Xiaopeng, HE Deyan, Monte Carlo simulation of thin film growth, Since in China, G33(4), 340(2003)

(张佩锋, 郑小平, 贺德衍, 薄膜生长的Monte Carlo 模拟, 中国科学,  G33(4), 340(2003))

13 LIU Zuli, ZHANG Xuefeng, YAO Kailun, HUANG Yunmi, Monte Carlo simulation of Cu thin film growth by magnetron sputtering, Chinese Journal of Vacuum Science and Technology, 25(2), 83(2005)

(刘祖黎, 张雪峰, 姚凯伦, 黄运米, 溅射沉积Cu膜生长的Monte Carlo模拟, 真空科学与技术学报,  25(2), 83(2005))

14 LIU Zuli, WEI Helin, WANG Hanwen, WANG Junzhen, A random model of thin film growth, Acta Physica Sinica, 48(7), 1302(1999)

(刘祖黎, 魏合林, 王汉文, 王均震, 薄膜生长的随机模型, 物理学报, 48(7), 1302(1999))

15 P.Bruschi, P.Cagnoni, A.Nannini, Temperature–dependent Monte Carlo simulations of thin metalfilm growth and percolation. Phys. Rev. B, 55 (12), 7955(1997)

16 J.A.Meyer, J.Vrijmoeth, H.A.van der Vegt, E.Vlieg, R.J.Behm, Importance of the additional step–edge barrier in determining film morphology during epitaxial growth, Phys. Rev. B., 51, 14790(1995)

17 Z.Y.ZHANG, M.G.Layally, Atomic–scale mechanisms for surfactant–mediated layer–by–layer growth in homoepitaxy, Phys. Rev. Lett., 72, 693 (1994)
[1] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene[J]. 材料研究学报, 2022, 36(2): 147-151.
[5] YANG Gaoyuan, XIANG Wenhao, LIU Dezheng, QU Junhao, LIANG Ying, LI Wangnan, XU Ke, ZHONG Jie, HUANG Fuzhi, CHEN Meihua, LIANG Guijie. Control of Morphology of SnO2 Nanorod Array by Hydrothermal Reaction Process[J]. 材料研究学报, 2021, 35(4): 293-301.
[6] LIU Zhe,CHEN Bohan,CHEN Ping. Treatment of Oxygen Dielectric Barrier Discharge Plasma on PBO Fiber Surface and Influence on Its BMI Composites[J]. 材料研究学报, 2020, 34(2): 109-117.
[7] LU Xiaoqing,ZHANG Quande,WEI Shuxian. Theoretical Study on Photoelectric Characteristic of A-π-D-π-A Indole-based Dye Sensitizers[J]. 材料研究学报, 2020, 34(1): 50-56.
[8] Caixia JIA,Qian WANG,Rong REN,Funing SUN. Effect of Technora Fiber Surface Plasma Treatment on Its Composite Interface Properties[J]. 材料研究学报, 2019, 33(6): 461-466.
[9] Jun YANG,Jiamin ZHANG,Wenjin MA,Lihui DU,Jianhong YI,Guoyou GAN,Xin YOU,Fengxian LI. Effect of Sintering Temperature on Microstructure and Mechanical Properties of TC4 Alloy[J]. 材料研究学报, 2019, 33(5): 338-344.
[10] Xuexiong LI,Dongsheng XU,Rui YANG. CPFEM Study of High Temperature Tensile Behavior of Duplex Titanium Alloy[J]. 材料研究学报, 2019, 33(4): 241-253.
[11] Jun JIANG,Shixin HUANG,Liandeng WANG,Sibin ZHANG,Dingyi ZHU. Effect of Cooling Rate on Microstructure Evolution and Mechanical Property of Cast Al-20% Si Alloy[J]. 材料研究学报, 2019, 33(4): 291-298.
[12] Huan AN,Jianchun WU,Zhong ZHANG,Huan WANG,Hua SUN,Changyong ZHAN,Yu ZOU. Effect of Electrochemical Etching Parameters on Surface Morphology of Thick-walled Macroporous Silicon Array[J]. 材料研究学报, 2019, 33(3): 177-184.
[13] ZHOU Hui,WANG Pei,LU Shanping. Effect of Grain Boundary Morphology and MC on Plastic Deformation Behavior of NiCrFe Weld Metal: Crystal Plasticity Finite Element Analysis[J]. 材料研究学报, 2019, 33(11): 801-808.
[14] ZHAO Qingyun,CHENG Sirui,HUANG Hong. Mechanism of Fatigue Life Enhancement for 1240 MPaHi-lock Bolt of Ti-38644 Ti-alloy[J]. 材料研究学报, 2019, 33(10): 735-741.
[15] Guoliang ZHANG, Xinguang WANG, Daohong WANG, Zhihai LI, Hongbin YAN, Chuanyong CUI. Influence of the γ' -phase Morphology on Portevin-Le Chatelier Effect in a Ni-Co Base Superalloy[J]. 材料研究学报, 2018, 32(9): 647-654.
No Suggested Reading articles found!