Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (5): 338-344    DOI: 10.11901/1005.3093.2018.556
ARTICLES Current Issue | Archive | Adv Search |
Effect of Sintering Temperature on Microstructure and Mechanical Properties of TC4 Alloy
Jun YANG1,2,Jiamin ZHANG1,2(),Wenjin MA3,Lihui DU1,2,Jianhong YI1,2,Guoyou GAN1,2,3,Xin YOU1,2,Fengxian LI1,2
1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093,China
2. Key Laboratory of Advanced Materials of Yunnan Province, Kunming 650031,China
3. Faculty of Material Science and Engineering, Monash University, Melbourne 3800, Australia
Cite this article: 

Jun YANG,Jiamin ZHANG,Wenjin MA,Lihui DU,Jianhong YI,Guoyou GAN,Xin YOU,Fengxian LI. Effect of Sintering Temperature on Microstructure and Mechanical Properties of TC4 Alloy. Chinese Journal of Materials Research, 2019, 33(5): 338-344.

Download:  HTML  PDF(10889KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti6Al4V (TC4) alloy was prepared by vacuum sintering of the pressed powder mixture of TiH2, Ti and Al-V alloy. The effect of sintering temperature on the phase constituents, microstructure , density and mechanical properties of the alloy was characterised by XRD, metallography, mechanical tests and SEM fracture morphology. The result shows that the prepared alloy composed of hexagonal α-Ti phase and body-centered cubic β-Ti phase. The alloy presents a microstructure with equiaxed grains, as well as mesh basket or lath (lamellar and acicular) like structures. With the increase of sintering temperature and holding time, the equiaxed grains gradually disappeared, while the amount of lamellar- and acicular-like structures increase and which then were coarsened . The alloy sintered at 1150℃ presents a microstructure with better mesh basket like structures. TC4 Ti-alloyswith relative density of 96.9%~99.6%, tensile strength of 719.3~914.1 MPa, elongation at break of 6.2%~-9.4% and hardness of 313.2~364.8 HV can be obtained by the method. Among others, the alloy with the best mechanical property could be acquired by sintering at 1150℃, which shows tensile strength of 914.1MPa, elongation at break of 7.6% and hardness of 355.5 HV respectively. The fracture morphology was mainly ductile for the alloy prepared by sintering of powder mixture of Ti and pure TiH2 , and it gradually turns into brittle-tough mixed fracture with the increasing amount of Al-V alloy powder was added, correspondingly, the tensile strength of the prepared alloys increased but the elongation at break decreased.

Key words:  metallic materials      powder metallurgy titanium alloy      TiH2      phase and morphology      mechanical property     
Received:  13 September 2018     
ZTFLH:  TG146.2+3  
Fund: Supported by National Natural Science Foundation of China(51464027)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.556     OR     https://www.cjmr.org/EN/Y2019/V33/I5/338

Fig.1  TiH2-Al-V blank (a), sintered specimen (b) and tensile specimen (c)
Fig.2  XRD diffraction pattern of specimens of heat pre-servation for (a) 1.5 h, (b) 2 h, (c) 2.5 h at 1100, 1150 and 1200℃
Fig.3  Metallographic structure of TC4 specimens (a) 1100℃-1.5 h, (b) 1150℃-1.5 h; (c) 1200℃-1.5 h, (d) 1100℃-2 h; (e)1150℃-2 h; (f) 1200℃-2 h; (g) 1100℃-2.5 h; (h) 1150℃-2.5 h; (i) 1200℃-2.5 h

Sintering

temperature

1.5 h2.0 h2.5 h
Before sintering After sinteringBefore sintering After sinteringBefore sintering After sintering
1100℃62.7396.9158.6598.6162.2399.06
1150℃58.9697.4258.7898.7762.2999.19
1200℃65.0399.0260.1799.0260.4899.58
Table 1  Relative density of samples before and after sintering (%)
Sintering conditionsRm/MPaRP0.2/MPaδ/%HV
1100℃-1.5 h848.1792.47.1313.2
1150℃-1.5 h914.1861.87.6355.5
1200℃-1.5 h719.3663.66.2334.9
1100℃-2 h902.4852.76.2345.8
1150℃-2 h853.2791.38.2346.6
1200℃-2 h769.0696.28.7337.3
1100℃-2.5 h894.0846.38.1364.8
1150℃-2.5 h909.1854.09.4353.3
1200℃-2.5 h820.2764.09.1363.7
Table 2  Tensile properties of TiH2-6Al-4V sample
SamplesRm/MPaRP0.2/MPaδ/%HV
TiH2562.9486.528.1228.5
TiH2-3Al-2V839.1775.121.4318.2
TiH2-6Al-4V914.1861.87.6355.5
Ti-6Al-4V937.2869.810.9376.8
Table 3  Tensile properties of samples sintering at 1150℃ for 1.5 h with different compositions
Fig.4  Tensile fracture morphology of specimen for 1.5 h at 1150℃ (a) TiH2, (b) TiH2-3Al-2V, (c) TiH2-6Al-4V, (d) Ti-6Al-4V
[1] HaaseC, LapovokR, NgH P, et al. Production of Ti-6Al-4V billet through compaction of blended elemental powders by equal-channel angular pressing [J]. Mater. Sci. Eng. A, 2012, 550(550): 263
[2] LutfullinR Y. Advanced technologies of processing titanium alloys and their applications in industry [J]. Rev. Adv. Mater. Sci., 2011, 26(1): 68
[3] XiB, JuJ H, WangJ, et al. Microstructure evolution of TA15 alloy during superplastic deformation [J]. J. Chin. Rare Met., 2014, 38(2): 1
[4] ZhaoY, HeY H, JiangW, et al. Research on preparation of Ti6Al4V alloy using powder metallurgy [J]. PM. Technol., 2009, 27(02): 108
[4] 赵 瑶, 贺跃辉, 江 垚等. 粉末冶金Ti6Al4V合金的研究 [J]. 粉末冶金技术, 2009, 27(2): 108)
[5] ZhaoW J, DingH, CaoF R, et al. Mechanical behavior of Ti6Al4V alloy during low-temperature superplastic deformation [J]. Chin. J. Mater. Res., 2008, 22(3): 269
[5] 赵文娟, 丁 桦, 曹富荣等. Ti6Al4V合金的低温超塑性拉伸变形行为 [J]. 材料研究学报, 2008, 22(3): 269)
[6] ShangQ L, LiuJ, ZhangW, et al. The performance study on Ti-6Al-4V sintered by titanium hydride powder [J]. Yunnan Metall., 2015, 44(1): 57
[7] WangH T, LeflerM, FangZ Z, et al. Titanium and titanium alloy via sintering of TiH2 [J]. Key Eng. Mater., 2010, 436(436): 157
[8] MoxsonV, SenkovO N, FroesF H. Innovations in titanium powder processing [J]. JOM., 2000, 52(5): 24
[9] ZhangJ M, YiJ H, LeiT, et al. Dehydrogenation and sintering process of titanium hydride for manufacture titanium and titanium alloy [J]. Sci. Technol. Rev., 2012, 30(1): 65
[9] 张家敏, 易健宏, 雷 霆等. TiH2粉末制备钛合金的烧结脱氢规律及工艺 [J]. 科技导报, 2012, 30(1): 65)
[10] SunY, LuoG, ZhangJ, et al. Phase transition, microstructure and mechanical properties of TC4 titanium alloy prepared by plasma activated sintering [J]. J. Alloys Compd., 2018, 741
[11] HongY, QuT, ShenH S, et al. Titanium production through hydrogenation and dehydrogenation process [J]. J. Chin. Rare Met., 2007, 31(3): 311
[11] 洪 艳, 曲 涛, 沈化森等. 氢化脱氢法制备钛粉工艺研究 [J]. 稀有金属, 2007, 31(3): 311)
[12] IvasishinO M, SavvakinD G, FroesF H, et al. Synthesis of the Ti-6Al-4V alloy with low residual porosity by a powder metallurgy method [J]. Powder Metall. Met. Ceram., 2002, 41(7/8): 382
[13] YuL, LiY M,DengZ Y, et al. Preparation of Ti-6Al-4V alloy by powder metallurgy using titanium hydride powder [J]. Met. Mater. Metall. Eng., 2004, (5): 17
[13] 喻 岚, 李益民, 邓忠勇等. 采用氢化钛粉制备Ti-6Al-4V合金 [J]. 金属材料与冶金工程, 2004, 32(5): 17)
[14] HuZ Y, ChengX W, ZhangZ H, et al. The influence of defect structures on the mechanical properties of Ti-6Al-4V alloys deformed by high-pressure torsion at ambient temperature [J]. J. Mater. Sci. Eng., 2017, 684: 1
[15] MurrL E, GaytanS M, et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies [J]. J. Mater. Sci. Technol., 2012, 28(1): 1
[16] ZouL M, MaoX H, LiuX, et al. Effect of particle size on microstructure and mechanical properties of Ti-6Al-4V alloy prepared by hot press [J]. Sci. Eng. Powd. Metal. Mater., 2016, 21(2): 217
[16] 邹黎明, 毛新华, 刘 辛等. 粉末粒度对热压Ti-6Al-4V合金微观组织和力学性能的影响 [J]. 粉末冶金材料科学与工程, 2016, 21(2): 217)
[17] ZhangT J. Electron microscopic study of phase transition in titanium alloys(II)-Crystal structure of two basic phases of titanium and its alloys and lattice defects possible to be produced by them [J]. Rare Met. Mater. Eng., 1989, (3): 57
[17] 张廷杰. 钛合金相变的电子显微镜研究(Ⅱ)——钛及其合金的两个基本相的结晶结构和它们可能产生的晶格缺陷 [J]. 稀有金属材料与工程, 1989, (3): 57)
[18] LouG T, SunJ K, YangX D, et al. Effect of Al and Mo on mechanical properties of cast titanium alloy [J]. Dev. Appl. Mater., 2003, 18(4): 32
[18] 娄贯涛, 孙建科, 杨学东等. Al、Mo含量对铸造钛合金力学性能的影响 [J]. 材料开发与应用, 2003, 18(4): 32)
[19] LiuY, TangH P. Powder Metallurgical Titanium Base Structural Materials [M]. Changsha: Central South University Press, 2012
[19] 刘 咏, 汤慧萍. 粉末冶金钛基结构材料 [M]. 长沙: 中南大学出版社, 2012
[20] ShaoH, ZhaoY Q, GeP, et al. Effects of different microstructure types on the strength and plasticity of TC21 alloy [J]. Rare Met. Mater. Eng., 2013, 42(4): 845
[20] 邵 晖, 赵永庆, 葛 鹏等. 不同组织类型对TC21合金强-塑性的影响 [J]. 稀有金属材料与工程, 2013, 42(4): 845)
[21] BaiX F, ZhaoY Q, ZhengC P, et al. Research on mechanical properties of titanium alloy with different microstructures [J]. Pro. Titanium Indu., 2011, 28(3): 26
[21] 白新房, 赵永庆, 郑翠萍等. 不同组织形态TC4钛合金力学性能研究 [J]. 钛工业进展, 2011, 28(3): 26)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!