Please wait a minute...
Chin J Mater Res  2011, Vol. 25 Issue (1): 1-6    DOI:
论文 Current Issue | Archive | Adv Search |
Progress in Research of Gum Metal
YANG Yi1,2,  LI Geping1,  WU Songquan1,3,  LI Yulan1,  YANG Ke1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2.Northwest Institute for Non-ferrous Metal Research, Xi'an 710016
3.Graduate University Chinese Academy of Sciences, Beijing 100039
Cite this article: 

YANG Yi LI Geping WU Songquan LI Yulan YANG Ke. Progress in Research of Gum Metal. Chin J Mater Res, 2011, 25(1): 1-6.

Download:  PDF(979KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Gum Metal stands for a group of multifunctional titanium alloys those satisfy certain special magic electronic parameters and chemical compositions. These alloys exhibit a series of unique properties, such as superplasticity and low work hardening ratio at room temperature, and high strength, nonlinear superelasticity, low elastic modulus, Invar and Elinvar behavior after severe cold deformation. The unique properties and deformation mechanism have been disputed seriously since the alloys were developed. In this paper, by integrating our research work, the progress in research of Gum Metal is reviewed from the aspects of alloy design, preparation process, properties, composition sensitivity and plastic deformation behaviors.
Key words:  Gum Metal       alloy design       composition       preparation process       deformation mechanism     
Received:  21 September 2010     
ZTFLH: 

TG146

 
Fund: 

Supported by Creativeness Fund of Institute of Metal Research of Chinese Academy of Sciences, National Key Basic Research and Development Program of China No. 2007CB613805, and National Natural Science Foundation of China No.51001088.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2011/V25/I1/1

1 T.Saito, T.Furuta, J.H.Hwang, S.Kuramoto, K.Nishino, N.Suzuki, R.Chen, A.Yamada, K.Ito, Y.Seno, T.Nonaka, H.Ikehata, N.Nagasako, C.Iwamoto, Y.Ikuhara, T.Sakuma, Multifunctional alloys obtained via a dislocation–free plastic deformation mechanism, Science,300(18), 464(2003)

2 J.Hwang, S.Kuramoto, T.Furuta, K.Nishino, T.Saito, Phase–stability dependence of plastic deformation behavior in Ti–Nb–Ta–Zr–O alloys, Journal of Materials Engineering and Performance, 14(6), 747(2005)

3 S.Kuramoto, T.Furuta, J.H.Hwang, K.Nishino, T.Saito, EBSP analysis on microstructure of gum metal after plastic deformation, Journal of the Japan Institute of Metals, 69(11), 953(2005)

4 S.Kuramoto, T.Furuta, J.H.Hwang, K.Nishino, T.Saito, Plastic deformation in a multifunctional Ti–Nb–Ta–Zr–O alloy, Metallurgical and Materials Transactions A, 37(3), 657(2006)

5 T.Furuta, S.Kuramoto, R.Chen, J.H.Hwang, K.Nishino, T.Saito, M.Ikeda, Effect of oxygen on phase stability and elastic deformation behavior in Gum Metal, Journal of the Japan Institute of Metals, 70(7), 579(2006)

6 T.Furuta, S.Kuramoto, J.H.Hwang, K.Nishino, T.Saito, Elastic deformation behavior of multi–functional Ti–Nb–Ta–Zr–O alloys, Materials Transactions, 46(12), 3001(2005)

7 T.Furuta, S.Kuramoto, J.H.Hwang, K.Nishino, T.Saito, M.Niinomi, Mechanical properties and phase stability of Ti–Nb–Ta–Zr–O alloys, Materials Transactions, 48(5), 1124(2007)

8 T.Furuta, K.Nishino, J.H.Hwang, A.Yamada, K.Ito, S.Osawa, S.Kuramoto, N.Suzuki, R.Chen, T.Saito, Development of multi functional titanium alloy, 'GUM METAL(, Ti–2003 Science and Technology, Proceedings of 10thWorld Conference on Titanium,Weinheim: Wiley– VCH, 1519(2003)

9 S.Kuramoto, T.Furuta, J.H.Hwang, K.Nishino, T.Saito, Elastic properties of Gum Metal, Materials Science and Engineering A, 442(1–2), 454(2006)

10 S.Kuramoto, T.Furuta, J.H.Hwang, Y.Seno, T.Nonaka, H.Ikehata, N.Nagasako, K.Nishino, T.Saito, C.Iwamoto, Y.Ikuhara, T.Sakuma, Origin for 'super(properties in GUM METAL, Ti–2003 Science and Technology, Proceedings of 10th World Conference on Titanium, Weinheim: Wiley–VCH, 1527(2003)

11 M.Abdel–Hady, K.Hinoshita, M.Morinaga, General approach to phase stability and elastic properties of β–type Ti–alloys using electronic parameters, Scripta Materialia, 55(5), 477(2006)

12 H.Ikehata, N.Nagasako, T.Furuta, A.Fukumoto, K.Miwa, T.Saito, First–principles calculations for development of low elastic modulus Ti alloys, Physical Review B, 70(17),

174113(2004)

13 H.Ikehata, N.Nagasako, S.Kuramoto, T.Saito, Designing new structural materials using density functional theory: the example of Gum Metal, MRS Bulletin, 31(9), 688(2006)

14 T.Aoyama, H.Kawamura, S.Kotake, Y.Suzuki, Influence of Containerless solidification on hardness in multifunctional titanium based alloys, Key Engineering Materials,

297–300, 495(2005)

15 Y.Yang, G.P.Li, G.M.Cheng, H.Wang, M.Zhang, F.Xu, K.Yang, Stress–introduced α martensite and twinning in a multifunctional titanium alloy, Scripta Materialia, 58(1), 9(2008)

16 R.J.Talling, R.J.Dashwood, M.Jackson, D.Dye, On the mechanism of superelasticity in Gum metal, Acta Materialia, 57(4), 1188(2009)

17 R.J.Talling, R.J.Dashwood, M.Jackson, S.Kuramotoc, D.Dye, Determination of (C11–C12) in Ti–36Nb–2Ta– 3Zr–0.3O (wt.%)(Gum metal), Scripta Materialia, 59(6), 669(2008)

18 M.Y.Gutkin, T.Ishizaki, S.Kuramoto, I.A.Ovidko, Nanodisturbances in deformed Gum Metal, Acta Materialia, 54(9), 2489(2006)

19 M.Y.Gutkin, T.Ishizaki, S.Kuramoto, I.A.Ovidko, N.V.Skiba, Giant faults in deformed Gum Metal, International Journal of Plasticity, 24(8), 1333(2008)

20 Y.Yang, G.P.Li, G.M.Cheng, Y.L.Li, K.Yang, Multiple deformation mechanisms of Ti–22.4Nb–0.73Ta–2.0Zr–1.34O alloy, Applied Physics Letters, 94(6), 061901(2009)

21 Y.Yang, S.Q.Wu, G.P.Li, Y.L.Li, Y.F.Lu, K.Yang, P.Ge, Evolution of deformation mechanisms of Ti–22.4Nb–0.73Ta–2Zr–1.34O alloy during straining, Acta Materialia, 58(7), 2778(2010)

22 YANG Yi, LI Geping, WU Songquan, LI Yulan, YANG Ke, Effect of Nb content on flow behavior of Ti–Nb–0.7Ta–2Zr–1.4O alloy during cold compression, The Chinese Journal of Nonferrous Metals, 20S, 495(2010)

(杨 义, 李阁平, 吴松全, 李玉兰, 杨 柯, Nb含量对Ti--Nb--0.7Ta--2Zr--1.4O合金室温压缩流变行为的影响, 中国有色金属学报,  20S, 495(2010))

23 H.Xing, W.Y.Guo, J.Sun, Substructure of recovered Ti–23Nb–0.7Ta–2Zr–0 alloy, Transactions of Nonferrous Metals Society of China, 17(6), 1456(2007)

24 H.Xing, J.Sun, Mechanical twinning and omega transition by  <111>{112} shear in a metastable β titanium alloy, Applied Physics Letters, 93(3), 031908(2008)

25 H.Xing, J.Sun, Q.Yao, W.Y.Guo, R.Chen, Origin of substantial plastic deformation in Gum Metals, Applied Physics Letters, 92(15), 151905(2008)

26 E.Withey, M.Jin, A.Minor, S.Kuramoto, D.C.Chrzan, J.W.M.Jr., The deformation of'Gum Metal(in nanoindentation, Materials Science and Engineering A, 493(1–2), 26(2008)

27 E.A.Withey, A.M.Minor, D.C.Chrzan, J.W.M.Jr., S.Kuramoto, The deformation of Gum Metal through in situ compression of nanopillars, Acta Materialia, 58(7), 2652(2010)

28 E.A.Withey, J.Ye, A.M.Minor, S.Kuramoto, D.C.Chrzan, J.W.M.Jr., Nanomechanical testing of Gum Metal, Experimental Mechanics, 50(1), 37(2010)

29 L.Q.Wang, W.J.Lu, J.N.Q, F.Zhang, D.Zhang, Influence of cold deformation on martensite transformation and mechanical properties of Ti–Nb–Ta–Zr alloy, Journal of Alloys

and Compounds, 469(1–2), 512(2008)

30 L.Q.Wang, W.J.Lu, J.N.Qin, F.Zhang, D.Zhang, Microstructure and mechanical properties of cold–rolled TiNbTaZr biomedical β titanium alloy, Materials Science and Engineering A, 490(1–2), 421(2008)

31 Y.B.Wang, Y.H.Zhao, Q.Lian, X.Z.Liao, R.Z.Valiev, S.P.Ringer, Y.T.Zhue, E.J.Lavernia, Grain size and reversible beta–to–omega phase transformation in a Ti alloy, Scripta Materialia, 63(6), 613(2010)

32 J.W.M.Jr., Y.Hanlumyuang, M.Sherburne, E.Withey, D.C.Chrzan, S.Kuramoto, Y.Hayashi, M.Hara, Anomalous transformation–induced deformation in  <110>  textured Gum Metal, Acta Materialia, 58(9), 3271(2010)

33 R.J.Talling, R.J.Dashwood, M.Jackson, D.Dye, Compositional variability in gum metal, Scripta Materialia, 60(11), 1000(2009)

34 T.Yano, Y.Murakami, D.Shindo, S.Kuramoto, Study of the nanostructure of Gum Metal using energy–filtered transmission electron microscopy, Acta Materialia, 57(2), 628(2009)

35 T.S.Li, J.J.W. Morris, N.Nagasako, S.Kuramoto, D.C.Chrzan,'Ideal(engineering alloys, Physical Review Letters, 98(10), 105503(2007)

36 T.Yano, Y.Murakami, D.Shindo, Y.Hayasaka, S.Kuramoto, Transmission electron microscopy studies on nanometer–sized ω phase produced in Gum Metal, Scripta Materialia, 63(5), 536(2010)

37 W.Y.Guo, J.Sun, J.S.Wu, Effect of deformation on corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy, Materials Characterization, 60(3), 173(2009)

38 W.Y.Guo, J.Sun, J.S.Wu, Electrochemical and XPS studies of corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy in Ringers solution, Materials Chemistry and Physics,  113(2–3), 816(2009)

39 T.Saito, T.Furuta, J.H.Hwang, S.Kuramoto, K.Nishino, N.Suzuki, R.Chen, A.Yamada, K.Ito, Y.Seno, T.Nonaka, H.Ikehata, N.Nagasako, C.Iwamoto, Y.Ikuhara, T.Sakuma, Multi functional titanium alloy 'GUM METAL(, Materials Science Forum, 426–432, 681(2003)

40 S.Hanada, O.Izumi, Transmission Electron Microscopic Observations of mechanical twinning in metastable beta titanium alloys, Metallurgical Transactions A, 17(8), 1409(1986)

41 S.Hanada, M.Ozeki, O.Izumi, Deformation characteristics in β phase Ti–Nb alloys, Metallurgical Transactions A, 16(5), 789(1985)

42 H.Y.Kim, Y.Ikehara, J.I.Kim, H.Hosoda, S.Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Materialia, 54(9), 2419(2006)

43 H.S.Kim, S.H.Lim, I.D.Yeo, W.Y.Kim, Stress–induced martensitic transformation of metastable β–titanium alloy, Materials Science and Engineering A, 449–451, 322(2007)
[1] ZHOU Zhangrui, LV Peisen, ZHAO Guoqi, ZHANG Jian, ZHAO Yunsong, LIU Lirong. Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures[J]. 材料研究学报, 2023, 37(5): 371-380.
[2] ZHU Xuedong, ZHANG Shuang, ZOU Cunlei, LIU Lingen, ZHU Zhihao, WAN Peng, DONG Chuang. Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior[J]. 材料研究学报, 2023, 37(4): 281-290.
[3] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
[4] CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu, HUANG Zhenyi. High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel[J]. 材料研究学报, 2022, 36(12): 907-918.
[5] LIU Tianyu, ZHU Zhihao, ZHANG Shuang, DONG Chuang, MIN Xiaohua, WANG Qing. A Novel Ti-4.13Al-9.36V Alloy of High Ductility Designed on Base of α''-Microstructure for Laser Solid Forming[J]. 材料研究学报, 2021, 35(10): 741-751.
[6] MIAO Yuezhen, WANG Xintong, XIE Mengshu, QI Kezhen, CHU Zengze, SUN Qiuju. Thermal Decomposition Dynamics of Nylon 66 and Its Composites[J]. 材料研究学报, 2020, 34(8): 599-604.
[7] SHI Jiaqing, XUE Fei, PENG Qunjia, SHEN Yao. A Phase-Field Study on Spinodal Decomposition of Ferrite of Fe-Cr-Ni Stainless Steels during Thermal Ageing and Annealing[J]. 材料研究学报, 2020, 34(5): 328-336.
[8] Zhicheng WANG,Hao WANG,Hailiang HUANG,Benfu Hu. Effect of Ta on High Temperature Tensile Properties of Advanced Ni-based Powder Metallurgy Superalloys[J]. 材料研究学报, 2019, 33(5): 331-337.
[9] Yutong YANG,Rui LUO,Xiaonong CHENG,Xiang GUI,Leli CHEN,Wei WANG,Qi ZHENG. High Temperature Plastic Deformation Behavior and Hot Workability of an Alumina-forming Austenitic Heat-resisting Alloy[J]. 材料研究学报, 2019, 33(3): 232-240.
[10] Yue WU,Jianping LI,Zhong YANG,Yongchun GUO,Zhijun MA,Minxian LIANG,Tong YANG,Dong TAO. Creep Behavior of a High Strength Compacted Graphite Cast Iron[J]. 材料研究学报, 2019, 33(1): 43-52.
[11] Jian WANG, Wenjing YANG, Zhuoliang LI, Hua DING, Ning ZHANG, Hongliang HOU. Superplastic Behavior and Deformation Mechanism of 7B04 Al-alloy[J]. 材料研究学报, 2018, 32(9): 675-684.
[12] Zhiyuan MEI, Xiaosong ZHOU, Fan WU. Deformation Mechanism and Energy Dissipation of Solid Buoyant Material with Different Ratio of Height to Diameter under Uniaxial Compression Loading[J]. 材料研究学报, 2018, 32(8): 591-598.
[13] Caihong YING, Lijia CHEN, Tianlong LIU, Lianquan GUO. Cyclic Creep Behavior of 11.5CrNbTi and 15Cr0.5MoNbTi Ultra Pure Ferritic Stainless Steels[J]. 材料研究学报, 2017, 31(7): 481-488.
[14] KANG Zhiqiang, YANG Xue, FENG Guohui, ZHANG Lin. Effect of Bi-Content on Microstructure Evolution of Al-Bi Monotectic Alloy[J]. 材料研究学报, 2016, 30(8): 603-608.
[15] Xinlong ZHOU,Zuliang LIU,Xiaoming WANG,Yu ZHENG,Qunrong SHI. Thermal Decomposition Behaviour of ANPyO at High Temperature by Molecular Dynamics Simulation[J]. 材料研究学报, 2016, 30(12): 940-946.
No Suggested Reading articles found!