Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (6): 579-584    DOI:
论文 Current Issue | Archive | Adv Search |
The Crystalization of Soft Segment of Thermal Sensitive Polyurethane and Its Intelligent Properties
ZHOU Hu1,  ZENG Jianxian1,  CHEN Dengchu1,  FAN Haojun2,  ZENG Junchang1
1.School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201
2.National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065
Cite this article: 

ZHOU Hu ZENG Jianxian CHEN Dengchu FAN Haojun ZENG Junchang. The Crystalization of Soft Segment of Thermal Sensitive Polyurethane and Its Intelligent Properties. Chin J Mater Res, 2010, 24(6): 579-584.

Download:  PDF(990KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A thermal sensitive polyurethane (TSPU) membrane was prepared by two-step polymerization in solvent and the crystallization of soft segment was analyzed. The results reveal that TSPU shows an obvious phase-separated structure and a phase transition temperature of the soft segment (defined as switch temperature, Ts). The switch temperature (Ts) and the thermal sensitivity of TSPU still remain available after thermal cyclic process. Moreover, when the temperature was lower than the Ts, the crystal of the soft segment was visible, but when the temperature exceeded the phase transition temperature of soft segment, the crystal of the soft segment melted and disappeared. As a result, the average radius (R) of the free volume holes and water vapor permeability of TSPU membrane showed a response to thermal stimuli. The phase transition of the soft segment controlled the significant change in free volume hole size and WVP, and the process mentioned above was stimulated by the external temperature.
Key words:  intelligent materials      polyurethane      crystallization      thermal sensitivity     
Received:  21 April 2010     
ZTFLH: 

TQ323.8

 
Fund: 

Supported by the Development Program of China (863 Program, No.2007AA03Z341) and National Natural Science Foundation of China Nos.21006022 and 20976040.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I6/579

[1] Y.Chen, Y.Liu, H.J.Fan, Hui Li, Bi Shi, H.Zhou, B.Y.Peng, The polyurethane membranes with temperature sensitivity for water vapor permeation, Journal of Membrane Science, 287, 192(2007) [2] H.M.Jeong, J.B.Lee, S.Y.Lee, B.K.Kim, Shape memory polyurethane containing mesogenic moiety, Journal of Materials Science, 35, 279(2000) [3] X.M.Ding, J.L.Hu, X.M.Tao, Effect of crystal melting on water vapor permeability of shape memory polyurethane film, Textiles Research Journal, 74, 39(2004) [4] H.M.Jeong, B.K.Ahn, S.M.Cho, B.K.Kim, Water vapor permeability of shape memory polyurethane with amorphous reversible phase, Journal of Polymer Science: Part B: Polymer Physics, 38, 3009(2000) [5] H.J.Fan, L.Li, X.N.Fan, B.Shi, The water vapor permeability of leather finished by thermo-responsive polyurethane, Journal of the Society of Leather Technologists and Chemists, 89, 121(2005) [6] B.K.Kim, S.Lee, Y.Xu, Polyurethanes having shape memory effects, Polymer, 37, 5781(1993) [7] B.K.Kim, S.Y.Lee, J.S.Lee, Polyurethane ionomers having shape memory effects, Polymer, 39, 2803(1998) [8] S.Hayashi, N.Ishikawa, C.Giordano, High Moisture permeability Polyurethane for Textile Application, Journal of Coated Fabric, 23, 74(1993) [9] W.Y.Jeong, S.K.An, The transport properties of polymer membrane-fabric composites, Journal of Materials Science, 36, 4797(2001) [10] Y.C.Jean, J.P.Yuan, J.Liu, H.J.Yang, Correlations between gas permeation and free- 33 hole properties probed by position annihilation spectroscopy, Journal of Polymer Science: Part B: Polymer Physics, 33, 2365(1995) [11] H.Nakanishi, S.J.Wang, Y.C.Jean, Positron Annihilation Studies of Fluids (Singapore, World Science, 1988) p.81 [12] S.Mondal, J.L.Hu, Water vapor permeability of cotton fabrics coated with shape memory polyurethane, Carbohydrate Polymers, 25, 124(2006) [13] I.Yilgor, Textiles coated with waterproof, moisture vapor permeable polymers, US patent, 5, 389, 430(1995) [14] H.Yin, Z.J.Yin, W.T.Ma, D.M.Zhu, A review of studies of polymeric membranes by positron annihilation lifetime spectroscopy, Plasma Science and Technology, 7(5), 56(2005)
[1] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[2] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[3] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[4] ZHU Xuedong, ZHANG Shuang, ZOU Cunlei, LIU Lingen, ZHU Zhihao, WAN Peng, DONG Chuang. Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior[J]. 材料研究学报, 2023, 37(4): 281-290.
[5] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[6] YU Sen, CHEN Leli, LUO Rui, YUAN Zhizhong, WANG Shuang, GAO Pei, CHENG Xiaonong. Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy[J]. 材料研究学报, 2023, 37(3): 211-218.
[7] YU Chao, XING Guangchao, WU Zhengmin, DONG Bo, DING Jun, DI Jinghui, ZHU Hongxi, DENG Chengji. Effect of Submicron Al2O3 Addition on Sintering Process of Recrystallized Silicon Carbide[J]. 材料研究学报, 2022, 36(9): 679-686.
[8] LUO Hanyu, CAO Jianchun, ZENG Min, HAO Tianci, GAO Peng, WANG Juncai, ZHANG Fanling. Effect of Zr on Deformed Austenite Recrystallization and Precipitates in Ti-Microalloyed Low Carbon Steel[J]. 材料研究学报, 2022, 36(2): 123-132.
[9] FENG Min, LIAO Yimin, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Crystallization and Thermal Shock Behaviors of SiO2-Al2O3-ZnO-CaO-based Glass with Added Different Contents of CeO2 at 900[J]. 材料研究学报, 2022, 36(2): 90-98.
[10] CUI Zhiqiang, ZHANG Ningfei, WANG Jie, HOU Qingyu, HUANG Zhenyi. High Temperature Compression Deformation Behavior of 9Mn27Al10Ni3Si Low Density Steel[J]. 材料研究学报, 2022, 36(12): 907-918.
[11] ZENG Zhipeng, SONG Xiaoyan, SUN Yong, SONG Shuanglin, LU Wei, HE Zhenglong. Microstructure and Mechanical Property of Polyurethane/Water Glass Grouting Materials during Curing Process[J]. 材料研究学报, 2022, 36(11): 855-861.
[12] LIU Yang, KANG Rui, FENG Xiaohui, LUO Tianjiao, LI Yingju, FENG Jianguang, CAO Tianhui, HUANG Qiuyan, YANG Yuansheng. Microstructure and Mechanical Properties of Extruded Mg-Alloy Mg-Al-Ca-Mn-Zn[J]. 材料研究学报, 2022, 36(1): 13-20.
[13] LIU Chao, WANG Xin, MEN Yue, ZHANG Haoyu, ZHANG Siqian, ZHOU Ge, CHEN Lijia, LIU Haijian. Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression[J]. 材料研究学报, 2021, 35(8): 583-590.
[14] XU Wen, WANG Zhijie, ZHU Wenwen, PENG Zitong, YAO Chu, YOU Feng, JIANG Xueliang. Preparation and Sound Absorption Properties of MPP-polymers Layered Structure Materials[J]. 材料研究学报, 2021, 35(7): 535-542.
[15] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
No Suggested Reading articles found!