Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (3): 259-265    DOI:
论文 Current Issue | Archive | Adv Search |
Microstructure and Precipitate Phases of a New Low--activation 9--12%Cr F/M Steel for SCWR Fuel Cladding Material
HU Jiaxue 1, LIU Guoquan 1,2, HU Benfu1, XIAO Xiang1
1.School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

HU Jiaxue LIU Guoquan HU Benfu XIAO Xiang. Microstructure and Precipitate Phases of a New Low--activation 9--12%Cr F/M Steel for SCWR Fuel Cladding Material. Chin J Mater Res, 2010, 24(3): 259-265.

Download:  PDF(1264KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thermo–Calc software was used to predict the microstructure of a new 9–12%Cr low–activation F/M steel designed for SCWR fuel cladding tube material. The microstructure of the experimental steel after quenching–and–tempering heat treatment was observed, and the chemistry and other characteristics of the precipitates were studied. The results showed that the experimental steel had a typical tempered martensitic structure. The precipitates located in various boundaries were Cr–rich carbides M23C6. After quenching and tempering, the specimens were cold deformed to a reduction of 60% and then annealed at 820   for 10–300 min. M23C6 wouldn't disappear during the process of recrystallization and transformation from ferrite to austenite at high temperature. The proportion of Cr to Fe was increasing during the process and finally reached to 2. The chemistry composition was (Cr15Fe6W2)C6.

Key words:  metallic materials       ferritic/martensitic steels       heat treatment       microstructure       carbides     
Received:  26 October 2009     
ZTFLH: 

TG142

 
Fund: 

Supported by National Key Basic Research and Development Program of China No.2007CB209801.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I3/259

1 S.Baindur, Materials challenges for the supercritical water–cooled reactor (SCWR), Bulletin of the Canadian Nuclear Society, 29(1),32 (2008) 2 C.Sun, R.Hui, W.Qu, S.Yick, Progress in corrosion resistant materials for supercritical water reactors, Corrosion Science, 51, 2508(2009) 3 P.Yvon, F.Carre, Structural materials challenges for advanced reactor systems, Journal of Nuclear Materials, 385, 217(2009) 4 K.L.Murty, I.Charit, Structural materials for Gen–IV nuclear reactors: Challenges and opportunities, Journal of Nuclear Materials, 383, 189(2008) 5 R.L.Klueh, D.R.Harries, High–chromium Ferritic and Martensitic Steels for Nuclear Applications (USA, ASTM, 2001) p.28 6 R.L.Klueh, Elevated–temperature Ferritic and Martensitic Steels and their Application to Future Nuclear Reactors (Tennessee, ORNL, 2004) p.13 7 F.Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra–supercritical power plants, Science and Technology of Advanced Materials, 9, 1(2008) 8 V.Kneˇzevi´c, G.Sauthoff, J.Vilk, G.Inden, A.Schneider, R.Agamennone, W.Blum, Y.Wang. A.Scholz, C.Berger, J.Ehlers, L.Singheiser, Martensitic/Ferritic super heat–resistant 650 steels–design and testing of model alloys, ISIJ International, 42(12), 1505(2002) 9 V.Kne?zevi´c, J.Balun, G.Sauthoff, G.Inden, A.Schneider, Design of martensitic/ferritic heat–resistant steels for application at 650 with supporting thermodynamic modelling, Materials Science and Engineering A, 477, 224(2008) 10 J.M.Vitek, R.L.Klueh, Precipitation reactions during the heat treatment of ferritic steels, Metallurgical Transactions A, 14(6), 1047(1983) 11 KANG Renmu, LIU Guoquan, HU Benfu, HU Jiaxue, WU Kai, XU Kun, Optimization design of reduced–activation ferritic/martensitic steels for SCWR fuel cladding materials, Atomic Energy Science and Technology, 43(6), 523(2009) (康人木, 刘国权, 胡本芙, 胡加学, 吴 凯, 徐 锟, 超临界水冷堆燃料包壳管用低活性F/M钢的优化设计, 原子能科学技术,  43(6), 523(2009)) 12 M.Hayakawa, K.Yamaguchi, M.Kimura, K.Kobayashi, Visualization of subgrain structures for a ferritic 12Cr–2W steel using backscattered scanning electron microscopy, Materials Letters, 58, 2565(2004) 13 F.Abe, Analysis of creep rates of tempered martensitic 9%Cr steel based on microstructure evolution, Materials Science and Engineering A, 510–511, 64(2009) 14 M.Kimura, K.Yamaguchi, M.Hayakawa, K.Kobayashi, K.Kanazawa, Microstructures of creep–fatigued 9–12%Cr ferritic heat–resisting steels, International Journal of Fatigue, 28, 300(2006) 15 S.Morito, H.Tanaka, R.Konishi, T.Furuhara, T.Maki, The morphology and crystallography of lath martensite in Fe– C alloys, Acta Materialia, 51, 1789(2003) 16 S.Morito, X.Huang, T.Furuhara, T.Maki, N.Hansen, The morphology and crystallography of lath martensite in alloy steels, Acta Materialia, 54, 5323(2006) 17 P.J.Ennis, A.Zielinska–Lipiec, O.Wachter, A.Czyrska–Filemonowicz, Microstructural stability and creep rupture strength of the martensitic steel P92 for advanced power plant, Acta Metallurgica, 45(12), 4901(1997) 18 R.C.Thomson, H.K.D.H.Bhadeshia, Carbide precipitation in 12Cr1MoV power plant steel, Metallurgical Transactions A, 23(3),1171(1992) 19 M.Tamura, H.Hayakawa, A.Yoshitake, A.Hishinuma, T.Konda, Phase stability of reduced activation ferritic steel: 8%Cr–2%W–0,2%V–0,04%Ta–Fe, Journal of Nuclear Materials, 155–157, 620(1988) 20 Y.Kadoya, B.F.Dyson, M.Mclean, Microstructural stability during creep of Mo or W bearing 12Cr steels, Metallurgical and Materials Transactions A, 33(8), 2459(2002)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!