Please wait a minute...
Chin J Mater Res  2009, Vol. 23 Issue (5): 550-556    DOI:
论文 Current Issue | Archive | Adv Search |
Simulation of thermal exposure effect on under–aged Al–Cu–Mg–Ag alloys
HOU Yanhui 1;2;3 ; LIU Zhiyi 1;2 ;  XIA Qingkun1;2 ; LI Yuntao1;2; LIU Yanbin 1;2
1.Key Laboratory of Nonferrous Metal Materials Science and Engineering; Ministry of Education; Central South University; Changsha 410083
2.School of Materials Science and Engineering; Central South University; Changsha 410083
3.School of Mechanics and Engineering; Southwest Jiaotong University; Chengdu 610031
Cite this article: 

HOU Yanhui LIU Zhiyi XIA Qingkun LI Yuntao LIU Yanbin . Simulation of thermal exposure effect on under–aged Al–Cu–Mg–Ag alloys. Chin J Mater Res, 2009, 23(5): 550-556.

Download:  PDF(1232KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A model for the interfacial energy between the Ω–phase precipitation and matrix was established by both the model prediction and experimental result fitting. Based on the pseudo–binary assumption and classical nucleation and growth theories, a physical model for thermodynamic precipitation was also developed, and by which, the microstructural evolution and tension yield strength of the underaged Al–Cu–Mg–Ag alloy were predicted. The results indicated that the results predicted are in good agreement with the experimental data.

Key words:  metallic materials      under–aged      thermal exposure      microstructure      strengthen     
Received:  28 November 2008     
ZTFLH: 

TG146

 
Fund: 

Supported by National Key Basic Research and Development Program of China No.2005CB623705–04 and Program of the Domestic Exchange PhD Student of Central South University, Ministry of Education, No.1810-752300020.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2009/V23/I5/550

1 Y.G.Li, P.A.Blenkinsop, M.H.Loretto, N.A.Walker, Structure and stability of precipitates in 500  exposed Ti–25V–15Cr–xAl alloys, Acta Mater., 46, 5777(1998) 2 O.Rios, S.Goyel, M.S.Kesler, D.M.Cupid, H.J.Seifert, F.Ebrahimi, An evaluation of high–temperature phase stability in the Ti–Al–Nb system, Scripta Materialia, 60, 156(2008) 3 M.Thomas, T.Lindley, M.Jackson, The microstructural response of a peened near–α titanium alloy to thermal exposure, Scripta Materialia, 60, 108(2008) 4 Y.B.Liu, Z.Y.Liu, Y.T.Li, Q.K.Xia, J.Zhou, Enhanced fatigue crack propagation resistance of an Al–Cu–Mg alloy by artificial aging, Mater. Sci. Eng. A, 492, 333(2008) 5 C.R.Hutchinson, X.Fan, S.J.Pennycook, G.J.Shiflet, On the origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag Alloys, Acta Materialia, 49, 2827(2001) 6 S.P.Ringer, W.Yeung, B.C.Muddle, I.J.Polmear, Precipitate stability in Al–Cu–Mg–Ag alloys aged at high temperatures, Acta Metall. Mater., 42, 1715(1994) 7 K.Hono, N.Sano, S.S.Babu, R.Okano, T.Sakurai, Characterization of the precipitation in Al–Li–Cu–Mg–(Mn, Zr) alloys, Acta Metall. Mater., 41, 829(1993) 8 M.Murayama, K.Hono, Pre–precipitate clusters and precipitation processes in Al–Mg–Si alloys, Scripta Mater., 38, 1315(1998) 9 L.Reich, M.Murayama, K.Hono, Evolution of Ω phase in an Al–Cu–Mg–Ag alloy–a three–dimensional atom probe study, Acta Mater., 46, 6053(1998) 10 S.P.Ringer, I.J.Polmear, T.Sakurai, Effect of additions of Si and Ag to ternary Al–Cu–Mg alloys in the α+ S phase field, Mater. Sci. Eng. A, 217, 273(1996) 11 R.Ferragut, A.Dupasquier, C.E.Macchi, Vacancy–solute interactions during multiple–step ageing of an Al–Cu–Mg– Ag alloy, Scripta Mater., 60, 137(2009) 12 R.Kampmann, R.Wagner, Phase Transformations in Materials, Mater. Sci. Technol., 5, 213(1991) 13 M.Volmer, A.Z.Weber, Keimbildung inubersattigten gebilden, Phys. Chem., 119, 277(1926) 14 K.C.Russell, Nucleation in solids: the induction and steady state effects, Adv. Colloid Interface Sci., 13, 205(1980) 15 C.Zener, Theory of growth of spherical precipitates from solid solution, J. Appl. Phys., 20, 95(1949) 16 H.B.Aaron, D.Fainstain, G.R.Kotler, Diffusion–limited phase transformations: A comparison and critical evaluation of the mathematical approximations, J. Appl. Phys., 41, 4404(1970) 17 A.Deschamps, Y.Brechet, Influence of predeformation and ageing of an Al–Zn–Mg alloy–II. Modeling of precipitation kinetics, Acta Mater., 47, 293(1999) 18 I.M.Lifshitz, V.V.Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 19, 35(1961) 19 LIU Gang, DING Xiangdong, SUN Jun, CHEN Kanghua, A model for age strengthening of plate–like–precipitate–containing Al alloys, The Chinese Journal of Nonferrous Metals, 11(3), 6(2001) (刘 刚, 丁向东, 孙军, 陈康华, 具有盘状析出相铝合金的时效强化模型, 中国有色金属学报,  11(3), 6(2001)) 20 C.Genevois, A.Deschamps, A.Denquin, B.D.Cottignies, Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta Mater., 53, 2447(2005) 21 E.Nembach, Particle strengthening of metals and alloys, Acta Mater., 40, 3325(1992) 22 F.King, Aluminum and Its Alloys (Chichester, Ellis Horwood Limited, 1987) 23 M.Beyeler, M.Maurice, R.Seguin, Contribution to the study of hetero–diffusion in aluminium, Mem. Sci. Rev. Metall., 67, 295(1970) 24 J.D.Boyd, R.B.Nicholson, The coarsening behavior of theta double prime and theta prime precipitates in two Al–Cu alloys, Acta Mater., 19, 1101(1971) 25 H.Hargarter, M.T.Lyttle, E.A.Starke, Effects of preferentially aligned precipitates on plastic anisotropy in Al–Cu– Mg–Ag and Al–Cu alloys, Mater. Sci. Eng. A., 257, 87(1998) 26 LIU Gang, ZHANG Guojun, DING Xiangdong, SUN Jun, CHEN Kanghua, A model for age strengthening of Al alloys with plate/disc–like or rod/needle–like precipitate, Rare Metal Materials and Engineering, 32(12), 971(2003) (刘  刚, 张国君, 丁向东, 孙  军, 陈康华, 具有盘/片状, 棒/针状析出相铝合金的时效--屈服强度变化模型, 稀有金属材料与工程,  32(12), 971(2003)) 27 P.M.Kelly, The effect of particle shape on dispersion hardening, Scripta Metall., 6, 647(1972) 28 I.N.Khan, M.J.Starink, J.L.Yan, A model for precipitation kinetics and hardening in Al–Cu–Mg alloys, Mater. Sci. Eng. A, 472, 66(2007) 29 M.Perez, A.Deschamps, Microscopic modelling of simultaneous two–phase precipitation: application to carbide precipitation in low–carbon steels, Mater. Sci. Eng. A, 360, 214(2003) 30 Q.Li, R.N.Shenoy, DSC and TEM characterizations of thermal stability of an Al–Cu–Mg–Ag alloy, J. Mater. Sci., 32, 3401(1997) 31 M.J.Starink, P.J.Gregson, A quantitative interpretation of DSC experiments on quenched and aged SiCp reinforced 8090 alloys, Scripta Metall. Mater., 33, 893(1995)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!