Please wait a minute...
Chin J Mater Res  2008, Vol. 22 Issue (6): 634-638    DOI:
论文 Current Issue | Archive | Adv Search |
High–cycle fatigue fracture behavior of ferrite–pearlite type microalloyed steels
 CHA Xiaoqin1; HUI Weijun2†; YONG Qilong2
1.Luoyang Ship Material Research Institute; Luoyang 471039
2.National Engineering Research Center of Advanced Steel Technology;
Central Iron and Steel Research Institute; Beijing 100081
Cite this article: 

CHA Xiaoqin; HUI Weijun; YONG Qilong. High–cycle fatigue fracture behavior of ferrite–pearlite type microalloyed steels. Chin J Mater Res, 2008, 22(6): 634-638.

Download:  PDF(1026KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High–cycle fatigue fracture behaviors of three ferrite–pearlite type microalloyed steels with different carbon and vanadium content and one quenched and tempered (QT) low alloy steel 40Cr for comparison were investigated by rotating bending fatigue test. The results show that microstructure has a significant effect on the fatigue properties of the microalloyed forging steels. Both fatigue limit and fatigue limit ratio increase with increasing the hardness of ferrite and the fatigue limit ratio of 22MnVS steel is as high as 0.60, which is much higher than that of QT steel 40Cr. The formation of film–like ferrite along coarse prior austenite grain boundary deteriorates the fatigue properties of medium–carbon steels 38MnVS and 48MnS in as–rolled condition, which is lower than that of QT steel 40Cr. The fatigue fracture mechanism of microalloyed steels is different from that of QT steel. For the microalloyed steels, almost all the fatigue cracks initiated mainly along the boundary between ferrite and pearlite and propagated preferentially along that boundary, whereas for QT steel with same strength level, which does not possess soft phase of ferrite, the fatigue cracks easily initiated at coarse subsurface inclusions.

Key words:  foundational discipline in materials science      ferrite–pearlite type microalloyed medium–carbon steel      high–cycle fatigue      fatigue crack initiation and propagation      microstructure     
Received:  16 January 2008     
ZTFLH: 

TG142

 
  TG111

 

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2008/V22/I6/634

1 DONG Chengrui, REN Haipeng, JIN Tongzhe, Microalloyed Non–quenched and Tempered Steels (Beijing, Metallurgical Industry Press, 2000)p.1 
(董成瑞, 任海鹏, 金同哲, 微合金非调质钢 (北京, 冶金工业出版社, 2000)p.1)
2 D.J.Naylor, Review of international activity on microalloyed engineering steels, Ironmaking and Steelmaking, 16(4), 246(1989)
3 D.J.Milbourn, Air–cooled forging steels for automotive applications, Steel Times, 224(10), 351(1996)
4 H.Kubo, H.Mori, Technical developments and recent trends in crankshaft materials, Kobelco Technology Review, (26), 37(2005)
5 P.Farsetti, A.Blarasin, Fatigue behaviour of microalloyed steels for hot–forged mechanical components, Int. J. Fatigue, 10(3), 153(1988)
6 ZHA Xiaoqin, HUI Weijun, YONG Qilong, DONG Han, WENG Yuqing, LONG Jinmin, Efffct of vanadium on the fatigue properties of microalloyed medium–carbon steels, Acta Metall. Sinica, 43(7), 719(2007)
(查小琴, 惠卫军, 雍岐龙, 董瀚, 翁宇庆, 龙晋明, 钒对中碳非调质钢疲劳性能的影响, 金属学报, 43(7), 719(2007))
7 H.Yaguchi, T.Tsuchida, Y.Matsushima, S.Abe, K.Iwasaki, A.Inada, Effect of microstructures on the fatigue behavior of V–added ferrite–pearlite type microalloyed steels, Kobelco Technology Review, (25), 59(2002)
8 S.Sankaran, V.S.Sarma, K.A.Padmanabhan, Low cycle fatigue behavior of a multiphase microalloyed medium carbon steel: comparison between ferrite m pearlite and quenched and tempered microstructures, Mater. Sci. & Engng., A345, 328(2003)
9 S.Nishida, N.Hattori, H.Kubota, H.Nisitani, Effect of carbon on fatigue crack initiation of plain carbon steels, Trans. JSME, 61A(590), 2134(1995)
(西田新一, 服部信祐, 久保田浩史,西谷弘信, フェライト結晶粒径を揃えたSC材の高サイクル疲労き裂発生に及ぼす炭素量の影響, 日本機械学会論文集A, 61A(590), 2134(1995))
10 ZHA Xiaoqin, HUI Weijun, YONG Qilong, DONG Han, WENG Yuqing, LONG Jinmin, Effect of microstructure on the tatigue properties of microalloyed medium–carbon steel, Heat Treatment of Metals, 32(6), 92(2007)
(查小琴, 惠卫军, 雍岐龙, 董瀚, 翁宇庆, 龙晋明, 微观组织对中碳微合金非调质钢疲劳性能的影响, 金属热处理, 32(6), 92(2007))

[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[8] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[11] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[13] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[14] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
No Suggested Reading articles found!