Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (12): 892-900    DOI: 10.11901/1005.3093.2025.041
ARTICLES Current Issue | Archive | Adv Search |
Effect of Size and Distribution of Inclusions on High-cycle Fatigue Properties of a 2 GPa-graded Ultra-high-strength Medium-Mn Steel
LI Changpeng1, PANG Jianchao2, WANG Zilong1, LI Yunjie1(), LI Linlin1()
1.State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LI Changpeng, PANG Jianchao, WANG Zilong, LI Yunjie, LI Linlin. Effect of Size and Distribution of Inclusions on High-cycle Fatigue Properties of a 2 GPa-graded Ultra-high-strength Medium-Mn Steel. Chinese Journal of Materials Research, 2025, 39(12): 892-900.

Download:  HTML  PDF(12326KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Inclusions can be easily introduced into steels during smelting, and they have an important impact on the fatigue cracking behavior and fatigue strength of the steels. As the strength of the steel increases, its sensitivity to microstructural defects also increases, yet the fatigue strength does not necessarily increase monotonically. Here, the high-cycle fatigue properties of a newly-developed ultra-high-strength medium-Mn steel with tensile strength higher than 2 GPa were investigated. The morphology, phase composition, distribution and size of the inclusions on the fatigue fracture were observed and analyzed by means of X-ray diffraction and scanning electron microscopy. The results indicate that the high-cycle fatigue of the ultra-high-strength steel is caused by the initiation of cracks at inclusions, which exhibit three types: surface inclusions, subsurface inclusions, and internal inclusions. The fatigue life increases as the crack initiation sites changing from surface to internal inclusions. The fatigue properties of ultra-high-strength steel are extremely sensitive to the size of inclusions. The critical size of the inclusions gradually increases as the distance between the inclusions and the test specimen surface increases. Under the same stress amplitude, the fatigue life increases with the decrease of the inclusion size. Compared with other medium- and high-strength steels, the current steel has high fatigue strength and fatigue ratio, which can be attributed to its high strength and good plasticity. The gradual transformation induced plasticity effect helped to disperse local stress concentration and dissipate plastic work to retard growth of fatigue cracks. Consequently, larger critical inclusion sizes are required for crack initiation and propagation during fatigue.

Key words:  metallic materials      2 GPa-graded medium-Mn steel      high-cycle fatigue      non-metallic inclusions      fatigue strength      critical inclusion size     
Received:  16 January 2025     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(52371101);Project of State Key Laboratory of Digital Steel(ZZ2021003)
Corresponding Authors:  LI Linlin, Tel: 15140093270, E-mail: lill@ral.neu.edu.cn;
LI Yunjie, Tel: 15140037408, E-mail: liyunjie@ral.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2025.041     OR     https://www.cjmr.org/EN/Y2025/V39/I12/892

CMnSiVFe
0.397.810.5Bal.
Table 1  Chemical composition of experimental steel (mass fraction, %)
Fig.1  Schematic diagram of the shape and size for tensile samples (a) and high-cycle fatigue samples (b)
Fig.2  Microstructure (a) and XRD pattern (b) of experimental steel
Fig.3  Vickers hardness diagram (a) and tensile engineering stress-strain curve (b) of experimental steel
Fig.4  S-N curve (a)and fatigue strength test staircase method diagram (b) of experimental steel
Fig.5  Fatigue fracture morphology of surface inclusion-induced cracking at different propagation stages (a) macroscopic fracture morphology, (b) microstructural characteristics of crack origin and associated inclusion chemistry, (c) morphology of the crack steady-state propagation zone, (d) morphology of the crack rapid propagation zone
Fig.6  Fatigue fracture morphology of subsurface inclusion-induced cracking at different propagation stages (a) macroscopic fracture morphology, (b) microstructural characteristics of crack origin and associated inclusion chemistry, (c) morphology of the crack steady-state propagation zone, (d) morphology of the crack rapid propagation zone
Fig.7  Fatigue fracture morphology of internal inclusion-induced cracking at different propagation stages (a) macroscopic fracture morphology, (b) microstructural characteristics of crack origin and associated inclusion chemistry, (c) morphology of the crack steady-state propagation zone, (d) morphology of the crack rapid propagation zone
Fig.8  Effect of inclusion location and size on fatigue performance (a) S-N curves for inclusions at different locations, (b) statistical distribution of inclusion sizes, (c) relationship between inclusion size and fatigue life at constant stress amplitude
Fig.9  Size of the critical inclusion was measured by extrapolation
No. of samplesσ-1 / MPaNf / cyclesareainc / μmMurakami formula
σ-1 / MPaareainc / μm
66001 × 10737.452316.4
86601 × 1078.66045.0
106601 × 10744.95079.2
116801 × 1078.76034.2
136801 × 10714.45544.1
Table 2  Murakami formula inverts fatigue strength and critical inclusion size
Fig.10  Relationship between the tensile strength and fatigue strength for the two kinds of experimental steel in this chapter and various steels reported[8,13,27~33] (a) and XRD pattern after high-cycle fatigue (b)
[1] Wan X R, Xu C G. High-Strength and Ultra-High-Strength Steels [M]. Beijing: China Machine Press, 1988: 2
万翛如, 许昌淦. 高强度及超高强度钢 [M]. 北京: 机械工业出版社, 1988: 2
[2] Dong H. Technological progresses of research activities on steel products [J]. China Metall., 2008, 18(10): 1
董 瀚. 钢铁材料研发的技术进展 [J]. 中国冶金, 2008, 18(10): 1
[3] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels [J]. Science, 2017, 357: 1029
doi: 10.1126/science.aan0177 pmid: 28839008
[4] Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
[5] Li Y J, Yuan G, Li L L, et al. Ductile 2-GPa steels with hierarchical substructure [J]. Science, 2023, 379: 168
doi: 10.1126/science.add7857 pmid: 36634172
[6] Wang B, Zhang Z J, Shao C W, et al. Improving the high-cycle fatigue lives of Fe-30Mn-0.9C twinning-induced plasticity steel through pre-straining [J]. Metall. Mater. Trans., 2015, 46A: 3317
[7] Rohit B, Muktinutalapati N R. Fatigue behavior of 18% Ni maraging steels: A review [J]. J. Mater. Eng. Perform., 2021, 30: 2341
doi: 10.1007/s11665-021-05583-w
[8] Wang P, Wang B, Liu Y, et al. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel [J]. Scr. Mater., 2022, 206: 114232
doi: 10.1016/j.scriptamat.2021.114232
[9] Vantadori S, Ronchei C, Scorza D, et al. Influence of non-metallic inclusions on the high cycle fatigue strength of steels [J]. Int. J. Fatigue, 2022, 154: 106553
doi: 10.1016/j.ijfatigue.2021.106553
[10] Sharma A, Oh M C, Ahn B. Recent advances in very high cycle fatigue behavior of metals and alloys-a review [J]. Metals, 2020, 10: 1200
doi: 10.3390/met10091200
[11] Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38: 1305
doi: 10.1111/ffe.v38.11
[12] Pang J C. Investigation on fatigue and fracture of high-strength metallic materials [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2012
庞建超. 高强度金属材料的疲劳与断裂研究 [D]. 沈阳: 中国科学院金属研究所, 2012
[13] Wang B, Zhang P, Duan Q Q, et al. Optimizing the fatigue strength of 18Ni maraging steel through ageing treatment [J]. Mater. Sci. Eng., 2017, 707A: 674
[14] Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16: 163
doi: 10.1016/0142-1123(94)90001-9
[15] Yang Z G, Zhang J M, Li S X, et al. On the critical inclusion size of high strength steels under ultra-high cycle fatigue [J]. Mater. Sci. Eng., 2006, 427A: 167
[16] Witte M, Lesch C. On the improvement of measurement accuracy of retained austenite in steel with X-ray diffraction [J]. Mater. Charact., 2018, 139: 111
doi: 10.1016/j.matchar.2018.02.002
[17] Bentley A P, Smith G C. Phase transformation of austenitic stainless steels as a result of cathodic hydrogen charging [J]. Metall. Trans., 1986, 17A: 1593
[18] Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials [J]. Mater. Sci. Eng., 2013, 564A: 331
[19] Liu C, Zhao M C, Zhao Y C, et al. Ultra-high cycle fatigue behavior of a novel 1.9 GPa grade super-high strength maraging stainless steel [J]. Mater. Sci. Eng., 2019, 755A: 50
[20] Li S X, Weng Y Q, Hui W J, et al. Very High Cycle Fatigue Properties of High Strength Steels: Effects of Nonmetallic Inclusions [M]. Beijing: Metallurgical Industry Press, 2010
李守新, 翁宇庆, 惠卫军 等. 高强度钢超高周疲劳性能: 非金属夹杂物的影响 [M]. 北京: 冶金工业出版社, 2010
[21] Coffin L F. A study of the effects of cyclic thermal stresses on a ductile metal [J]. J. Fluids Eng., 1954, 76: 931
[22] Li S X. Effects of inclusions on very high cycle fatigue properties of high strength steels [J]. Int. Mater. Rev., 2012, 57: 92
doi: 10.1179/1743280411Y.0000000008
[23] Furuya Y, Matsuoka S, Abe T, et al. Gigacycle fatigue properties for high-strength low-alloy steel at 100 Hz, 600 Hz, and 20 kHz [J]. Scr. Mater., 2002, 46: 157
doi: 10.1016/S1359-6462(01)01213-1
[24] Yang C Y, Luan Y K, Li D Z, et al. Very high cycle fatigue properties of bearing steel with different aluminum and sulfur content [J]. Int. J. Fatigue, 2018, 116: 396
doi: 10.1016/j.ijfatigue.2018.06.047
[25] Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 735
doi: 10.1046/j.1460-2695.2002.00576.x
[26] Fan M, Zhang Y M, Xiao Z M. Small scale yielding analysis for a disclination-nucleated Zener-Stroh crack interacting with a circular inclusion [J]. Int. J. Damage Mech., 2017, 26: 541
doi: 10.1177/1056789516636946
[27] Gao C, Yang M Q, Pang J C, et al. Abnormal relation between tensile and fatigue strengths for a high-strength low-alloy steel [J]. Mater. Sci. Eng., 2022, 832A: 142418
[28] Shin J C, Lee S, Hwa R J. Correlation of microstructure and fatigue properties of two high-strength spring steels [J]. Int. J. Fatigue, 1999, 21: 571
doi: 10.1016/S0142-1123(99)00010-9
[29] Zhang J M, Li S X, Yang Z G, et al. Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime [J]. Int. J. Fatigue, 2007, 29: 765
doi: 10.1016/j.ijfatigue.2006.06.004
[30] Sankaran S, Subramanya Sarma V, Padmanabhan K A, et al. High cycle fatigue behaviour of a multiphase microalloyed medium carbon steel: a comparison between ferrite-pearlite and tempered martensite microstructures [J]. Mater. Sci. Eng., 2003, 362A: 249
[31] Yang Z G, Yao G, Li G Y, et al. The effect of inclusions on the fatigue behavior of fine-grained high strength 42CrMoVNb steel [J]. Int. J. Fatigue, 2004, 26: 959
doi: 10.1016/j.ijfatigue.2004.01.009
[32] Huang H W, Wang Z B, Lu J, et al. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer [J]. Acta Mater., 2015, 87: 150
doi: 10.1016/j.actamat.2014.12.057
[33] Agarwal N, Kahn H, Avishai A, et al. Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization [J]. Acta Mater., 2007, 55: 5572
doi: 10.1016/j.actamat.2007.06.025
[34] Murakami Y. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions [M]. Amsterdam: Elsevier, 2002
[35] Shi G, Atkinson H V, Sellars C M, et al. Application of the generalized Pareto distribution to the estimation of the size of the maximum inclusion in clean steels [J]. Acta Mater., 1999, 47: 1455
doi: 10.1016/S1359-6454(99)00034-8
[36] Atkinson H V, Shi G, Sellars C M, et al. Statistical prediction of inclusion sizes in clean steels [J]. Mater. Sci. Technol., 2000, 16: 1175
doi: 10.1179/026708300101506920
[37] Yang Z G, Li S X, Zhang J M, et al. The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime [J]. Acta Mater., 2004, 52: 5235
doi: 10.1016/j.actamat.2004.06.031
[38] Wang P, Zhang P, Wang B, et al. Fatigue cracking criterion of high-strength steels induced by inclusions under high-cycle fatigue [J]. J. Mater. Sci. Technol., 2023, 154: 114
doi: 10.1016/j.jmst.2023.02.006
[39] Wang P. Investigation on high-cycle fatigue damage mechanism and fatigue performance optimization of GCr15 bearing steels [D]. Hefei: University of Science and Technology of China, 2023
王 鹏. GCr15轴承钢高周疲劳损伤机制与疲劳性能优化研究 [D]. 合肥: 中国科学技术大学, 2023
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[4] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[5] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[6] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[7] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[8] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[9] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[10] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[11] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[12] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[13] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[14] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
[15] JIANG Ailong, TAN Bingzhi, PANG Jianchao, SHI Feng, ZHANG Yunji, ZOU Chenglu, LI Shouxin, WU Qihua, LI Xiaowu, ZHANG Zhefeng. Effect of Microstructure Characteristics of Compacted Graphite Cast Irons of RuT300 and RuT450 on Low-cycle Fatigue Properties and Damage Mechanisms[J]. 材料研究学报, 2025, 39(6): 443-454.
No Suggested Reading articles found!