Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (12): 952-960    DOI: 10.11901/1005.3093.2025.034
ARTICLES Current Issue | Archive | Adv Search |
Strength and Ductility of Dual-phasic Heterostructured FeCrNiAl Multi-principal Element Alloy
WANG Junyang1,2, HU Lihao1,2, ZHANG Lu1,2()
1.School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2.Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
Cite this article: 

WANG Junyang, HU Lihao, ZHANG Lu. Strength and Ductility of Dual-phasic Heterostructured FeCrNiAl Multi-principal Element Alloy. Chinese Journal of Materials Research, 2025, 39(12): 952-960.

Download:  HTML  PDF(12251KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A multi-component high-entropy alloy Fe40Cr37Ni20Al3 was melted via vacuum arc melting and casting, which then was subjected to cold rolling and annealing so that to control and adjust its microstructure. Then the microstructure evolution and mechanical properties of the alloy were systematically investigated. The results demonstrate that the as-cast alloy exhibits a dual-phase structure comprising BCC and FCC phases. After cold rolling and annealing, the alloy develops a dual-phasic heterogeneous structure, wherein the BCC phase transforms into a "hard-encapsulated-soft" structure and the FCC phase evolves into a "mixed-grain" structure. This microstructural modification enables a synergistic enhancement in strength and ductility of the alloy. The improvement in ductility is primarily attributed to the enhanced deformability of the BCC phase facilitated by the "hard-encapsulated-soft" structure, while the increase in strength is predominantly ascribed to the hetero-deformation-induced (HDI) strengthening effect and microstructural refinement resulting from the dual-morphology heterogeneous structure.

Key words:  metallic materials      multi-principal element alloys      thermomechanical processing      mechanical properties      heterogeneous structure     
Received:  16 January 2025     
ZTFLH:  TG13  
Fund: Open Fund of the Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University(SHSYS202205);Fundamental Research Funds for the Universities of Liaoning Province(LJ212410143012);National College Student Innovation and Entrepreneurship Training Program Project in Shenyang Aerospace University(D202410181358484165)
Corresponding Authors:  ZHANG Lu, Tel: 15840198862, E-mail: zhanglu5853@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2025.034     OR     https://www.cjmr.org/EN/Y2025/V39/I12/952

Fig.1  SEM micrographs of SS alloy (a) dual-phase structure, (b) high magnification of region b in (a)
SampleFigurePhase/RegionElement
FeCrNiAl
SSFig.1aMatrix phase38.7441.8416.343.10
Second phase40.4930.9024.324.31
Table 1  Chemical compositions of two phases of SS alloy (atomic fraction, %)
Fig.2  SEM micrographs of CA alloy (a) low magnification SEM picture, (b) high magnification of the region A in (a), (c) high magnification of region B in (a), (d) high magnification SEM micrograph and the corresponding EDS elemental maps of region d in (a)
SampleFigureRegionElement
FeCrNiAl
CAFig.2aA39.7437.2419.753.27
B41.5927.8226.204.41
Table 2  Chemical composition of different regions in the CA alloy (atomic fraction, %)
Fig.3  TEM images of the matrix region in the CA alloy (a) BF image of region A in Fig.2a, (b) SAED pattern of the BCC matrix, (c) SAED pattern of the FCC phase, (d) HAADF-STEM image of region A in Fig.2a with elemental distribution mapping
SampleRegionPhaseElement
FeCrNiAl
CAABCC matrix35.7855.707.141.39
FCC phase43.0527.0925.764.10
B2 phase19.3419.6436.8124.21
BFCC43.6127.2626.292.84
BCC34.8556.867.101.19
Table 3  Chemical compositions in different regions of the CA alloy (atomic fraction, %)
Fig.4  TEM images of the recrystallized region in the CA alloy (a) BF image of region B in Fig.2a, (b) SAED pattern of BCC grains, (c) SAED pattern of the FCC matrix, (d) HAADF-STEM image of region B in Fig.2a with corresponding elemental distribution mapping
Fig.5  Schematic diagram of microstructure evolution in Fe40Cr35Ni20Al3 alloy
Fig.6  Room-temperature tensile stress-strain curves of the two alloys (a) and comparison of the yield strength and elongation of the two alloys (b)
Fig.7  Schematic diagram of the deformation process in Region A of CA alloy
Fig.8  Schematic diagram of the deformation process in Region B of the CA alloy
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
[2] Wang J, Huang W G. Microstructure and mechanical properties of CrMoVNbFe x high-entropy alloys [J]. Chin. J. Mater. Res., 2016, 30: 609
王 江, 黄维刚. CrMoVNbFe x 高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609
[3] Zeng S, Zhou Y K, Gao H Q, et al. Novel as-cast Ti-rich refractory complex concentrated alloys with superior tensile properties [J]. Sci. China Mater., 2024, 67: 311
doi: 10.1007/s40843-023-2705-2
[4] Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
doi: 10.1016/j.actamat.2015.04.014
[5] Yao M J, Pradeep K G, Tasan C C, et al. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility [J]. Scr. Mater., 2014, 72-73: 5
doi: 10.1016/j.scriptamat.2013.09.030
[6] Wang F J, Zhang Y, Chen G L, et al. Tensile and compressive mechanical behavior of a CoCrCuFeNiAl0.5 high entropy alloy [J]. Int. J. Mod. Phys., 2009, 23B: 1254
[7] Wu Z, Parish C M, Bei H. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys [J]. J. Alloy. Compd., 2015, 647: 815
doi: 10.1016/j.jallcom.2015.05.224
[8] Wen S H, Zhao Z H, Huang Z H, et al. Effects of Ti on microstructures and properties of CoCrNi series medium/high entropy alloys containing single-phase FCC [J]. Chin. J. Nonferrous Met., 2023, 33: 1480
温盛华, 赵志豪, 黄正华 等. Ti对单相FCC的CoCrNi体系中/高熵合金组织与性能的影响 [J]. 中国有色金属学报, 2023, 33: 1480
[9] Zou Y, Maiti S, Steurer W, et al. Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy [J]. Acta Mater., 2014, 65: 85
doi: 10.1016/j.actamat.2013.11.049
[10] Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
[11] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
[12] Mao J J, Fu T, Pan H C, et al. Kr ions irradiation damage behavior of AlNbMoZrB refractory high-entropy alloy [J]. Chin. J. Mater. Res., 2023, 37: 641
doi: 10.11901/1005.3093.2022.526
毛建军, 富 童, 潘虎成 等. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为 [J]. 材料研究学报, 2023, 37: 641
doi: 10.11901/1005.3093.2022.526
[13] Zhang W, Xu Q, Wu S S, et al. Microstructure and mechanical properties of NbMoTiVSi x refractory high entropy alloy [J]. Chin. J. Rare Met., 2023, 47: 1204
张 炜, 徐 琴, 吴帅帅 等. NbMoTiVSi x 难熔高熵合金组织结构及力学性能 [J]. 稀有金属, 2023, 47: 1204
[14] Lou Z K, Liu J W, Lin Y T, et al. Microstructure and mechanical properties of Co36Ni(37- x)Cr20Al3Ti2Nb x medium-entropy alloys [J]. Trans. Mater. Heat Treat., 2024, 45: 117
娄照坤, 刘继文, 林雅婷 等. Co36Ni(37- x)Cr20Al3Ti2Nb x 中熵合金的微观组织和力学性能 [J]. 材料热处理学报, 2024, 45: 117
[15] Drescher S, Seils S, Boll T, et al. Solid solution strengthening in single-phase Au-Cu-Ni-Pd-Pt-based high-entropy alloys [J]. J. Alloy. Compd., 2024, 1002: 175273
doi: 10.1016/j.jallcom.2024.175273
[16] Liu J W, Hu Z H, Wang J Y, et al. Effect of γ′ phase coarsening on tensile properties during long-term aging of NiCoCrFeAlTiMoW alloy [J]. J. Mater. Eng., 2024, 52(2): 172
doi: 10.11868/j.issn.1001-4381.2023.000292
刘继文, 胡朝辉, 王君阳 等. NiCoCrFeAlTiMoW合金长期时效过程中γ′相粗化对拉伸性能的影响 [J]. 材料工程, 2024, 52(2): 172
doi: 10.11868/j.issn.1001-4381.2023.000292
[17] Jang T J, Baek J H, Suh J Y, et al. Microstructural origin of the superior strength–ductility synergy of γ′-strengthened high-entropy alloy with heterogeneous grain structure and discontinuous precipitation configuration [J]. J. Mater. Res. Technol., 2023, 27: 984
doi: 10.1016/j.jmrt.2023.10.018
[18] Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
doi: 10.1016/j.scriptamat.2012.12.002
[19] Liu D, Qiao J W. Strengthening methods of room and cryogenic temperatures mechanical properties of Fe45Mn15Cr15Ni25 high entropy alloy [J]. J. Taiyuan Univ. Technol., 2021, 52: 509
刘 丹, 乔珺威. Fe45Mn15Cr15Ni25高熵合金室温及低温力学性能强化方式 [J]. 太原理工大学学报, 2021, 52: 509
[20] Kang L, Liang X P, Li H Z, et al. Effects of rolling and annealing on microstructure and mechanical properties of FeCoCrNiN0.07 high-entropy alloy [J]. Hot Work. Technol., 2024, 53(17): 94
康 亮, 梁霄鹏, 李慧中 等. 轧制及退火对FeCoCrNiN0.07高熵合金组织及力学性能的影响 [J]. 热加工工艺, 2024, 53(17): 94
[21] Zhou J, Liao H C, Chen H M, et al. Effect of cold rolling on microstructure and mechanical behavior of Fe35Ni35Cr20Mn10 high-entropy alloy [J]. Mater. Charact., 2024, 218: 114503
doi: 10.1016/j.matchar.2024.114503
[22] Qi L, Chrzan D C. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys [J]. Phys. Rev. Lett., 2014, 112: 115503
doi: 10.1103/PhysRevLett.112.115503
[23] Morris J W, Guo Z, Krenn C R, et al. The limits of strength and toughness in steel [J]. ISIJ Int., 2001, 41: 599
doi: 10.2355/isijinternational.41.599
[24] Zhu Y T, Wu X L. Heterostructured materials [J]. Prog. Mater. Sci., 2023, 131: 101019
doi: 10.1016/j.pmatsci.2022.101019
[25] Xing H Z, Li X Y. Architecture design and strengthening-toughening mechanisms in heterogeneous-structured medium/high entropy alloys [J]. Sci. Bull., 2024, 69: 3864
邢汉峥, 李晓雁. 中高熵合金的异构设计及其强韧化机理 [J]. 科学通报, 2024, 69: 3864
[26] An Z B, Mao S C, Zhang Z, et al. Strengthening-toughening mechanism and mechanical properties of span-scale heterostructure high-entropy alloy [J]. Acta Metall. Sin., 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
安子冰, 毛圣成, 张 泽 等. 高熵合金跨尺度异构强韧化及其力学性能研究进展 [J]. 金属学报, 2022, 58: 1441
doi: 10.11900/0412.1961.2022.00322
[27] Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
[28] Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112 pmid: 26554017
[29] Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2 pmid: 30700708
[30] Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
doi: 10.1016/j.mattod.2020.09.029
[31] Schneider M, Laplanche G. Effects of temperature on mechanical properties and deformation mechanisms of the equiatomic CrFeNi medium-entropy alloy [J]. Acta Mater., 2021, 204: 116470
doi: 10.1016/j.actamat.2020.11.012
[32] Fu A, Liu B, Lu W J, et al. A novel supersaturated medium entropy alloy with superior tensile properties and corrosion resistance [J]. Scr. Mater., 2020, 186: 381
doi: 10.1016/j.scriptamat.2020.05.023
[33] Fu A, Liu B, Li Z Z, et al. Dynamic deformation behavior of a FeCrNi medium entropy alloy [J]. J. Mater. Sci. Technol., 2022, 100: 120
doi: 10.1016/j.jmst.2021.05.049
[34] Yin Y, Tan Q Y, Sun Q, et al. Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy [J]. J. Mater. Sci. Technol., 2022, 96: 113
doi: 10.1016/j.jmst.2021.03.083
[35] Yin Y, Chen Z H, Mo N, et al. High-temperature age-hardening of a novel cost-effective Fe45Ni25Cr25Mo5 high entropy alloy [J]. Mater. Sci. Eng., 2020, 788A: 139580
[36] Hu Z H, Lin Y T, Zhang L, et al. Enhancing mechanical properties of high Cr dual-phase FeCrNi medium-entropy alloy through mutual phase transformation and grain refinement [J]. Mater. Sci. Eng., 2024, 907A: 146745
[37] Wang J R, Wang A G, Zhang L, et al. Enhancing cryogenic mechanical properties of a cost-effective FeCrNi dual-phase multi-principal element alloy by fully constrained heterostructure and deformation twinning [J]. Mater. Sci. Eng., 2024, 916A: 147365
[38] Dong X G, Liu J S, Zhang L, et al. Achieving excellent mechanical properties in a dual-phase FeCrNi medium entropy alloy through athermal transformations and dislocation structures [J]. J. Mater. Res. Technol., 2023, 27: 5219
doi: 10.1016/j.jmrt.2023.11.059
[1] YANG Jingqing, DONG Wenchao, LU Shanping. Effect of δ-ferrite Content on Resistance to Cracking and Nitric Acid Corrosion of Weld Joints for High SiN Austenitic Stainless Steel[J]. 材料研究学报, 2025, 39(9): 641-649.
[2] ZHAN Jie, CHEN Xiaojiang, ZOU Zhili, SU Xingdong, XIE Shiyu, JIANG Liang, WANG Jinling, WANG Lielin. Preparation of Nano Ag0@ACF Material and Its Adsorption Performance for Gaseous Iodine[J]. 材料研究学报, 2025, 39(9): 673-682.
[3] XIE Fangxia, WU Guangqing, ZHANG Shiwen, LU Zeyi, MU Yanming, HE Xueming. Preparation and Performance of a Novel Al-alloy Based Composite 7075-TiB2[J]. 材料研究学报, 2025, 39(9): 683-693.
[4] SHI Yuanji, CHENG Cheng, ZHANG Haitao, HU Daochun, CHEN Jingjing, LI Junwan. Nanoscale Analysis of Material Removal Behavior of β-SiC Semiconductor Devices during Sliding Wear[J]. 材料研究学报, 2025, 39(9): 701-711.
[5] ZHOU Yingying, ZHANG Yingxian, DAN Zhuoya, DU Xu, DU Haonan, ZHEN Enyuan, LUO Fa. Influence of La Doping on Microwave Absorption Properties of YFeO3 Ceramics[J]. 材料研究学报, 2025, 39(8): 561-568.
[6] WANG Mingyu, LI Shujun, HE Zhenghua, TANG Mingde, ZHANG Siqian, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Process Parameters on Density and Compressive Properties of Ti5553 Alloy Block Prepared by SLM[J]. 材料研究学报, 2025, 39(8): 583-591.
[7] GENG Ruiwen, YANG Zhijiang, YANG Weihua, XIE Qiming, YOU Jinjing, LI Lijun, WU Haihua. Molecular Dynamics Simulation of Subsurface Damage of 6H-SiC Bulk Materials Induced by Grinding with Nano-sized Diamond Particles[J]. 材料研究学报, 2025, 39(8): 603-611.
[8] LU Tong, WANG Yana, ZHANG Chao, LEI Peng, ZHANG Hongrong, HUANG Guangwei, ZHENG Liyun. Effect of BN Spray-doping on Magnetic Properties and Resistivity of Hot-deformed Nd-Fe-B Magnets[J]. 材料研究学报, 2025, 39(8): 612-618.
[9] ZHANG Wei, ZHANG Bing, ZHOU Jun, LIU Yue, WANG Xufeng, YANG Feng, ZHANG Haiqin. Influence of Cold Rolling Q Ratio on Plastic Deformation Texture Evolution of TA18 Tube[J]. 材料研究学报, 2025, 39(8): 619-631.
[10] TAN Dexin, CHEN Shihui, LUO Xiaoli, NING Xiaomei, WANG Yanli. Synthesis of Pd Nanosheets with Numerous Defects and Their Electrocatalytic Oxidation Performance for Glycerol[J]. 材料研究学报, 2025, 39(8): 632-640.
[11] ZHANG Ning, WANG Yaoqi, YANG Yi, MU Yanhong, LI Zhen, CHEN Zhiyong. Superplastical Deformation Behavior and Microstructure Evolution of Ti65 Ti-alloy[J]. 材料研究学报, 2025, 39(7): 489-498.
[12] LIU Jing, LI Yunjie, QIN Yu, LI Linlin. Influence of Particle Size Control of Cementite on Hardness of GCr15 Bearing Steel[J]. 材料研究学报, 2025, 39(7): 521-532.
[13] HAN Yangyi, ZHANG Tenghao, ZHANG Ke, ZHAO Shiyu, WANG Chuangwei, YU Qiang, LI Jinghui, SUN Xinjun. Effect of Final Cooling Temperature on Precipitates, Microstructure, and Hardness of Ti-V-Mo Complex Microalloyed Steel[J]. 材料研究学报, 2025, 39(7): 533-541.
[14] LIU Zhihua, WANG Mingyue, LI Yijuan, QIU Yifan, LI Xiang, SU Weizhao. Preparation and Photocatalytic Performance of 1T/2H O-MoS2@S-pCN Composite Catalyst in Degradation of Hexavalent Chromium and Ciprofloxacin[J]. 材料研究学报, 2025, 39(7): 551-560.
[15] YANG Liang, CHUAI Rongyan, XUE Dan, LIU Fang, LIU Kunlin, LIU Chang, CAI Guixi. Microstructure and Mechanical Properties of Resistance Spot Welding Joints for SUS301L Stainless Steel[J]. 材料研究学报, 2025, 39(6): 435-442.
No Suggested Reading articles found!