Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (6): 425-434    DOI: 10.11901/1005.3093.2024.242
ARTICLES Current Issue | Archive | Adv Search |
Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates
YANG Yanyan1, LIU Yan1,2, YANG Song2, WANG Zitong1, ZHU Feng1, YU Zhongliang1(), HAO Xiaogang2()
1.School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
2.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Cite this article: 

YANG Yanyan, LIU Yan, YANG Song, WANG Zitong, ZHU Feng, YU Zhongliang, HAO Xiaogang. Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates. Chinese Journal of Materials Research, 2025, 39(6): 425-434.

Download:  HTML  PDF(10490KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The recovery of phosphorus (P) resources from wastewater can alleviate the problem of eutrophication and shortage of phosphate resources. Herein, a flower-like hybrid film of Co-Ni layered double hydroxide grown on graphene doped polypyrrole (PPy-G/CoNi-LDH) with exclusive separation property for phosphate ions was successfully fabricated by using two-steps electrodeposition method, which may be applied for separation and recovery of low concentrated phosphate anions via electrically switched ion exchange (ESIX). The composition, morphology and structure of PPy-G/CoNi-LDH hybrid film were demonstrated by XRD, SEM, XPS, and TEM. The effect of various influencing factors, including phosphate concentrations, absorption potentials, acid-alkalinity, co-existing anions and their concentrations on the electrochemical adsorption performance of hybrid film was also investigated. The results indicate that the increase in absorption potentials and initial concentrations of wastwaters could enhance the adsorption capacity. The adsorption capacity of PPy-G/CoNi-LDH hybrid film for PO43- in 10 mg·L-1 PO43- solution was 40.23 mg·g-1 by an applied absorption potential of 0.8 V. In addition, in conditions of neutral and slightly alkaline solutions, PPy-G/CoNi-LDH hybrid film had good adsorption capacity, and it was minimally affected by coexisting ions and their concentrations. After 7 cycles of adsorption/desorption, the adsorption capacity PPy-G/CoNi-LDH hybrid film still maintained good stability.

Key words:  composite      graphene doped polypyrrole      CoNi-LDH      electrically switched ion exchange      phosphate anions      separation     
Received:  29 May 2024     
ZTFLH:  TB34  
Fund: National Natural Science Foundation Regional Innovation and Development Joint Fund(U21A2030);National Natural Science Foundation of China(22169017);Jiangxi Provincial Natural Science Foundation(20224BAB203026);Science and Technology Research Project of Jiangxi Provincial Education Department(GJJ2201823);Science and Technology Research Project of Jiangxi Provincial Education Department(GJJ2201824)
Corresponding Authors:  YU Zhongliang, Tel: 18734861008, E-mail: yzh2401@126.com;
HAO Xiaogang, Tel: 13073535863, E-mail: xghao@tyut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.242     OR     https://www.cjmr.org/EN/Y2025/V39/I6/425

Fig.1  XRD patterns of PPy-G, CoNi-LDH, and PPy-G/CoNi-LDH hybrid films
Fig.2  SEM images of PPy-G (a), CoNi-LDH (b), and PPy-G/CoNi-LDH hybrid films (c, d)
Fig.3  TEM images of PPy-G/CoNi-LDH hybrid film at different magnifications (a) TEM, (b) HRTEM
Fig.4  XPS spectrum of PPy-G/CoNi-LDH hybrid film in 10 mg·L-1 PO43- solution before and after oxidation: (a) survey spectrum, (b) P 2p, (c) Ni 2p and (d) Co 2p
Fig.5  CV curves of PPy-G/CoNi-LDH hybrid film with different molar ratios of Ni∶Co (a) and with or without DMF (b) under -1.2 V potential
Fig.6  Adsorption kinetic curves of PPy-G/CoNi-LDH hybrid film for phosphate anions with different initial concentrations under 0.8 V oxidation potential
ρ0 / mg·L-1qe(exp) / mg·g-1Pseudo-first-orderPseudo-second-order
k1 / min-1qe(cal) / mg·g-1R2k2 / g·mg-1·min-1qe(cal) / mg·g-1R2
5075.235.67 × 10-373.220.9975.1 × 10--5107.640.945
3062.505.80 × 10-359.810.9047.6 × 10-585.030.953
1040.235.07 × 10-341.110.9951.0 × 10-444.210.817
516.041.45 × 10-316.540.9473.5 × 10-485.320.386
Table 1  Kinetic adsorption parameters of PO43- on PPy-G/CoNi-LDH hybrid film with different concentrations under 0.8 V
Fig.7  Adsorption capacity of PPy-G/CoNi-LDH hybrid film for PO43- under different adsorption potentials in 50 mg·L-1 PO43- solution (a), SEM images of PPy-G/CoNi-LDH hybrid film after adsorption under 0.9 V (b) and 1.0 V (c) adsorption potential
Fig.8  Effects of pH value on PO43- adsorption on PPy-G/CoNi-LDH hybrid film in 10 mg·L-1 PO43- solution under 0.8 V potential
Fig.9  Effect of competing anions with different concentrations on PO43- adsorption onto PPy-G/CoNi-LDH hybrid film in 10 mg·L-1 PO43- solution
Fig.10  The normalized adsorption capacity of PPy-G/CoNi-LDH hybrid film for phosphate ions in 10 mg·L-1 PO43- solutions
Fig.11  Adsorption capacity of PPy-GO, CoNi-LDH and PPy-G/CoNi-LDH hybrid film (a), and PPy-G/CoNi-LDH hybrid film under different methods for phosphate ions (b) in 10 mg·L-1 PO43- solutions; O 1s (c) and N 1s(d) spectra of PPy-G/CoNi-LDH hybrid film before and after oxidation
1 Jupp A R, Beijer S, Narain G C, et al. Phosphorus recovery and recycling-closing the loop[J]. Chem. Soc. Rev., 2021, 50(1): 87
2 Daneshgar S, Callegari A, Capodaglio A G, et al. The potential phosphorus crisis: resource conservation and possible escape technologies: a review[J]. Resources, 2018, 7(2): 37
3 Withers P J A, Elser J J, Hilton J, et al. Greening the global phosphorus cycle: How green chemistry can help achieve planetary P sustainability[J]. Green Chem., 2015, 17(4): 2087
4 Wang M, Hu C, Barnes B B, et al. The great Atlantic Sargassum belt[J]. Science, 2019, 365(6448): 83
doi: 10.1126/science.aaw7912
5 Srinivasan R, Sorial G A. Treatment of perchlorate in drinking water: A critical review[J]. Sep. Purif. Technol., 2009, 69(1): 7
6 Ghorbani M, Seyedin O, Aghamohammadhassan M. Adsorptive removal of lead (II) Ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review[J]. J. Environ. Manage., 2020, 254: 109814
7 Chen F, Zeng S, Ma J, et al. Treatment of chlorpyrifos manufacturing wastewater by peroxide promoted-catalytic wet air oxidation, struvite precipitation, and biological aerated biofilter[J]. Environ. Sci. Pollut. R, 2019, 26(26): 26721
doi: 10.1007/s11356-019-05896-3
8 Tian Q, Liu Q M, Li F, et al. Regulation of salt tolerance in bacteria and its application in hypersaline BNR process[J]. Chem. Ind. Eng. Prog., 2025, 44: 465
doi: 10.16085/j.issn.1000-6613.2023-2257
田 晴, 刘青盟, 李 方 等. 细菌的耐盐调控及其在高盐BNR工艺中的应用[J]. 化工进展, 2025, 44: 465
9 Li X, Shen S T, Xu Y Y, et al. Application of membrane separation processes in phosphorus recovery: A review[J]. Sci Total Environ, 2021, 767: 144346
10 Kumar P S, Korving L, Keesman K J, et al. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics[J]. Chem. Eng. J., 2019, 358: 160
11 Du X, Hao X, Wang Z, et al. Electroactive ion exchange materials: current status in synthesis, applications and future prospects[J]. J. Mater. Chem. A, 2016, 4(17): 6236
12 Gao F F, Du X, Hao X G, et al. A potential-controlled ion pump based on a three-dimensional PPy@GO membrane for separating dilute lead ions from wastewater[J]. Electrochim. Acta, 2017, 236: 434
13 Hong S P, Yoon H, Lee J, et al. Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization[J]. J. Colloid Interface Sci., 2020, 564: 1
14 Liu G G, Wang G R, Jin Z L. Graphdiyne-modified NiV-layered double hydroxide nanostructures for supercapacitor applications[J]. ACS Appl. Nano Mater., 2023, 6(23): 21803
15 Gu Y, Yang Z, Zhou J, et al. Graphene/LDHs hybrid composites synthesis and application in environmental protection[J]. Sep. Purif. Technol., 2024, 328: 125042
16 Ma X Q, Zhou J L, Lu N, et al. Preparation and delaminating of glycine-Mg3Al LDHs and its intercalation compounding with montmorillonite[J]. Chin. J. Mater. Res., 2014, 28(2): 100
马小茜, 周景龙, 卢 楠 等. 甘氨酸-Mg3Al水滑石的制备、剥离以及与蒙脱土的插层组装[J]. 材料研究学报, 2014, 28(2): 100
doi: 10.11901/1005.3093.2013.372
17 Wang J, Gao F, Du X, et al. A high-performance electroactive PPy/rGO/NiCo-LDH hybrid film for removal of dilute dodecyl sulfonate ions[J]. Electrochim. Acta, 2020, 331: 135288
18 Zhao W H, Liu T T, Wu N D, et al. Bimetallic electron-induced phase transformation of CoNi LDH-GO for high oxygen evolution and supercapacitor performance[J]. Sci. China Mater., 2023, 66(2): 577
19 Tan S R, Yao Z, Liu Z C, et al. Fabrication and supercapacitor performance of metal organic framework Zn-BTC/rGO nanocomposites with different morphologies[J]. Chin. J. Mater. Res., 2024, 38 (8): 576
谭上荣, 姚 焯, 刘泽辰 等. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38 (8): 576
doi: 10.11901/1005.3093.2023.446
20 Zhu Y, An S, Sun X, et al. Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance[J]. Chem. Eng. J., 2020, 383: 123206
21 Liang H, Lin J, Jia H, et al. Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors[J]. J. Mater. Chem. A, 2018, 6(31): 15040
22 Ma P, Zhu J, Du X, et al. Specific separation and recovery of phosphate anions by a novel NiFe-LDH/rGO hybrid film based on electroactivity-variable valence[J]. J. Colloid Interface Sci., 2022, 626: 47
23 Liang H, Lin J, Jia H, et al. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor[J]. J. Power Sources, 2018, 378: 248
24 Wang X L, Zhang D, Shi X M, et al. Preparation by Co metal-organic framework template and capacitive properties of NiCo-layered double hydroxide/nickel foam composites[J]. Chin. J. Inorg. Chem., 2023, 39(4): 607
王晓亮, 张 多, 石雪梅 等. Co金属有机骨架模板制备NiCo水滑石/泡沫镍复合材料及电容性能[J]. 无机化学学报, 2023, 39(4): 607
25 Youmbi B S, Pelisson C H, Denicourt-Nowicki A, et al. Impact of the charge transfer process on the Fe2+/Fe3+ distribution at Fe3O4 magnetic surface induced by deposited Pd clusters[J]. Surf. Sci., 2021, 712: 121879
26 Yang Y Y, Li Y G, Zhu X W, et al. Potential induced reversible removal/recovery of phosphate anions with high selectivity using an electroactive NiCo-layered double oxide film[J]. J. Inorg. Mater., 2021, 36(3): 292
doi: 10.15541/jim20200340
杨言言, 李永国, 祝小雯 等. 电活性镍钴双金属氧化物高选择性去除/回收水中磷酸盐离子[J]. 无机材料学报, 2021, 36(3): 292
doi: 10.15541/jim20200340
27 Sun B, Hao X G, Wang Z D, et al. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis[J]. J. Hazard. Mater., 2012, 233: 177
28 Yang Y Y, Du X, Abudula A, et al. Highly efficient defluoridation using a porous MWCNT@NiMn-LDH composites based on ion transport of EDL coupled with ligand exchange mechanism[J]. Sep. Purif. Technol., 2019, 223: 154
29 Cai J, Zhang Y, Pan B, et al. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger[J]. Water Res., 2016, 102: 109
doi: S0043-1354(16)30468-7 pmid: 27337346
30 Du X, Sun X, Zhang H, et al. A facile potential-induced in-situ ion removal trick: fabrication of high-selective ion-imprinted film for trivalent yttrium ion separation[J]. Electrochim. Acta, 2015, 176: 1313
31 Li C, Chen N, Zhao Y, et al. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: Sorption capability and mechanism[J]. Chemosphere, 2016, 163: 81
doi: S0045-6535(16)31033-5 pmid: 27521642
[1] MA Xue′e, HU Meifeng, SONG Xueli, CHANG Yue, ZHA Fei. Photocatalytic Degradation of Methyl Orange Using Palygorskite Supported Zn-In LDO/ZnS/In2S3 Composites[J]. 材料研究学报, 2025, 39(6): 413-424.
[2] LI Haibin, XU Huiting, TANG Wei, LV Haibo, SHUAI Meirong. Electrolytic Polishing Capillary Effect Reaction Mechanism Research on Bonding Interface of Hot Rolled Carbon Steel / Stainless Steel[J]. 材料研究学报, 2025, 39(5): 362-370.
[3] LIU Yanyun, WANG Na, ZHANG Zhihua, BAI Wen, LIU Yunjie, CHEN Yongqiang, LI Wanxi, LI Yu. MOFs Derived C/LDH/rGO Network Composite Materials for High Specific Capacity High-performance Aqueous Zinc Ion Capacitors[J]. 材料研究学报, 2025, 39(5): 371-376.
[4] HU Yong, LU Shifeng, YANG Tao, PAN Chunwang, LIU Lincheng, ZHAO Longzhi, TANG Yanchuan, LIU Dejia, JIAO Haitao. Microstructure and Properties of FeCoCrNiMn/6061 Al-alloy Matrix Composites[J]. 材料研究学报, 2025, 39(5): 353-361.
[5] LI Qingpeng, LIU Jiaxing, AN Xiaoyun, LI Yongzhi, GAO Meng, SUN Hongtao, WANG Na. Preparation and Properties of High Performance Silane Conversion Film on Electroplated Zinc Surface[J]. 材料研究学报, 2025, 39(4): 296-304.
[6] LI Ying, NIE Xuetong, QIAN Liguo, ZHU Yiren. Synthesis of Co3O4/ZnO@MG-C3Nx Catalysts and Their Visible Light Degradation of Methylene Blue Performance[J]. 材料研究学报, 2025, 39(4): 241-250.
[7] ZHANG Senhan, WANG Huan, ZHANG Jiakang, FENG Xiaoqian, ZHANG Qijian, ZHAO Yonghua. Alkali-modified HZSM-5 Zeolite/Cu-ZnO-Al2O3 Bifunctional Catalyst for Hydrogen Production via Steam Reforming of Dimethyl Ether[J]. 材料研究学报, 2025, 39(4): 251-258.
[8] SUN Bo, ZHANG Tianyu, ZHAO Qiangqiang, WANG Han, TONG Yu, ZENG You. Electromagnetic Shielding Performance of MXene@Carbon Fiber Felt Composite Films[J]. 材料研究学报, 2025, 39(4): 289-295.
[9] TANG Chen, ZHANG Yaozong, WANG Yifan, LIU Chao, ZHAO Derun, DONG Penghao. Preparation of α-Fe2O3/TiO2 Photocatalytic Material and Its Performance for Phenol Degradation[J]. 材料研究学报, 2025, 39(3): 233-240.
[10] YU Wenjing, LIU Chunzhong, ZHANG Hongliang, LU Tianni, WANG Dong, LI Na, HUANG Zhenwei. Effect of SiC Content on Microstructure and Corrosion Resistance of Micro-arc Oxidation Film on Composites SiCP/6092 Al-alloy[J]. 材料研究学报, 2025, 39(2): 153-160.
[11] BAO Xiukun, SHI Guimei. Preparation and Microwave Absorption Properties of NiCo@C(N)/NC Nanocomposites[J]. 材料研究学报, 2025, 39(2): 126-136.
[12] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[13] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[14] CUI Sikai, FU Guangyan, LIN Lihai, YAN Yukun, LI Chusen. Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature[J]. 材料研究学报, 2024, 38(9): 659-668.
[15] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
No Suggested Reading articles found!