Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (2): 135-142    DOI: 10.11901/1005.3093.2020.333
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Photocatalytic Activity of Fe/Yb Co-doped Titanium Dioxide Hollow Sphere
PENG Zitong1,2, GAO Yanrong1,2, YAO Chu1,2, YAO Junlong1,2, ZHU Wenwen1,2, XU Wen1,2, JIANG Xueliang1,2()
1.Hubei Key Laboratory of Plasma Chemistry and New Materials, Wuhan 430074, China
2.School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430074, China
Cite this article: 

PENG Zitong, GAO Yanrong, YAO Chu, YAO Junlong, ZHU Wenwen, XU Wen, JIANG Xueliang. Preparation and Photocatalytic Activity of Fe/Yb Co-doped Titanium Dioxide Hollow Sphere. Chinese Journal of Materials Research, 2021, 35(2): 135-142.

Download:  HTML  PDF(4048KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composites of Fe/Yb co-doped TiO2 hollow spheres (Fe/Yb-TiO2HS) were prepared by template method and then characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TG). The photocatalytic performance of the composites was assessed with a simulated wastewater of 20 mg/L methyl orange solution under radiation of visible light. The results show that the degradation efficiency of doped titanium dioxide hollow spheres for the methyl orange could be significantly improved. The composite doped with 0.1% Fe and 1% Yb presents the optimal photocatalytic performance with degradation efficiency up to 92.57% for the methyl orange.

Key words:  composite materials      titanium dioxide hollow sphere      photocatalytic technology      doped     
Received:  13 August 2020     
ZTFLH:  TB333  
Fund: National Natural Science Foundation of China(51273154);Innovation Fund for Graduate Students of Wuhan Institute of Technology(CX2019056)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.333     OR     https://www.cjmr.org/EN/Y2021/V35/I2/135

Fig.1  Photocatalytic reaction device
Fig.2  SEM images of sample MF templates (a) and Fe/Yb@TiO2HS (b)
Fig.3  FT-IR spectra of different samples (a) MFMS, (b) TiO2@MFCS, (c) TiO2HS, (d) 0.1% Fe/1% Yb@TiO2HS
Fig.4  XRD patterns of different samples
Fig.5  XPS spectra of 0.5%Fe/1%Yb-TiO2HS (a) full-scale spectrum, (b) Ti 2p spectrum, (c) Yb 4d spectrum, (d) O1s spectrum, (e) Fe 2p spectrum
Fig.6  TG patterns of different samples
Fig.7  UV-vis spectra (a) and Kubelka-Munk function curves (b) of different samples
Fig.8  Photocatalytic efficiency (a) and photocatalytic rate (b) of different samples under visible light
SamplesK/min-1R2Degradation rate/%
0.1%Fe/1%Yb-TiO2HS0.005230.974692.57
0.3%Fe/1%Yb-TiO2HS0.003720.9903368.92
0.5%Fe/1%Yb-TiO2HS0.001730.9850531.08
0.7%Fe/1%Yb-TiO2HS0.001050.9251518.92
1%Fe/1%Yb-TiO2HS0.0009090.9621616.22
TiO2HS0.001110.7328823.45
Table 1  Visble light photo-degradation rate constant K, correlation cofficient R2 and degradation rate for differrent samples
Fig.9  Photocatalytic mechanism diagram of Fe/Yb-TiO2HS
1 Chen D, Ma F, Lei B, et al. Synthesis of hollow anatase nanospheres with excellent adsorption and photocatalytic performances [J]. RSC. Adv, 2017, 7(66): 41399
2 Li K, Liu S, Yi S, et al. A simple and low-cost approach to fabricate TiO2-NO2, hollow spheres with excellent simulated sunlight photocatalytic activity [J]. Mater. Chem. Phys, 2016, 181: 375
3 Wu D, Zhu F, Li J, et al. Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells [J]. J. Mater. Chem, 2012, 22: 11665
4 Dadgostar S, Tajabadi F, Taghavinia N. Mesoporous submicrometer TiO2, hollow spheres as scatterers in dye-sensitized solar cells [J]. ACS. Appl. Mater. Inter, 2012, 4: 2964
5 Zhao S, Cheng Z, Kang L. The facile preparation of Ag decorated TiO2/ZnO nanotubes and their potent photocatalytic degradation efficiency [J]. RSC. Adv, 2017, 7(79): 50064
6 Wang H, Hu X T, Ma Y J, et al. Nitrate-group-grafting -induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution [J]. Chinese. J. Catal, 2020, 41: 95
7 Mermana J, Sutthivaiyakit P, Blaise C, et al. Photocatalysis of S-metolachlor in aqueous suspension of magnetic cerium-doped mTiO2 core-shellunder simulated solar light [J]. Environ. Sci. Pollut. Res. Int. 2017, 24:4077
8 Roldán M V, Castro Y, Pellegri N, et al. Enhanced photocatalytic activity of mesoporous SiO2/TiO2 sol-gel coatings doped with Ag nanoparticles [J]. J. Sol-Gel Sci. Technol, 2015, 76: 180
9 Halim W, Moumen A, Ouaskit S, et al. Photocatalytic properties of TiO2 /ZnO thin film [J]. Mol. Cryst. Liq. Cryst, 2016, 627: 49
10 Liao D L, Liao B Q. Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants [J]. J. Photoch. Photobio. A, 2007, 187(2): 363
11 Sun L M, He X X, Yuan Y S, et al. Tuning interfacial sequence between nitrogen-doped carbon layer and Au nanoparticles on metal-organic framework -derived TiO2 to enhance photocatalytic hydrogen production [J]. Chem. Eng. J, 2020, 397: 125468
12 Kong X Q, Li J Y, Yang C W, et al. Fabrication of Fe2O3/g-C3N4@N-TiO2 photocatalyst nanotube arrays that promote bisphenol A photodegradation under simulated sunlight irradiation [J]. Sep. Purif. Technol, 2020, 248: 116924
13 Bekena F, Kuo D H. 10 nm sized visible light TiO2 photocatalyst in the presence of MgO for degradation of methylene blue [J]. Mat.Sci. Semicon. Pro, 2020, 116: 105152
14 Bansal J, Swami S K, Singh A, et al. Apparatus-dependent sol-gel synthesis of TiO2 nanoparticles for dye-sensitized solar cells [J]. J. Disper. Sci. Technol., 2021, 42(3): 432
15 Mahadik M A, An G W, David S, et al. Fabrication of A/R-TiO2 composite for enhanced photoelectrochemical performance: Solar hydrogen generation and dye degradation [J]. Appl. Surf. Sci, 2017, 426: 833
16 Javed H M A, Qureshi A A, Mustafa M S, et al. Advanced Ag/rGO/TiO2 ternary nanocomposite based photoanode approaches to highlyefficient plasmonic dye-sens itized solar cells [J]. Opt. Commun, 2019, 124408
17 Zhang L, Qi H J, Zhao Y, et al. Au nanoparticle modified three-dimensional network PVA/RGO/TiO2 composite for enhancing visible light photocatalytic performance [J]. App. Surf. Sci, 2019, 498: 143855
18 Zhang S W, Niu H H, Lan Y, et al. Synthesis of TiO2 nanoparticles on plasma-treated carbon nanotubes and its application in photoanodes of dye-sensitized solar cells [J]. J. Phys. Chem C, 2019, 123: 31294
19 Lv Y, Xing B L, Yi G Y, et al. Synthesis of oxygen-rich TiO2/coal-based graphene aerogel for enhanced photocatalytic activities [J]. Mater. Sci. Semicon. Proc, 2020, 117: 105169
20 Nguyen C C, Dinh C T. Hollow Sr/Rh-codoped TiO2 photocatalyst for efficient sunlight-driven organic compound degradation [J]. RSC. Adv, 2017, 7: 3480
21 Li J, Jia S, Sui G. Preparation of hollow Nd/TiO2 sub-microspheres with enhanced visible-light photocatalytic activity [J]. RSC. Adv, 2017, 7: 34857
22 Wafae H, Sandrine C, Soukaina Z, et al. Latex copolymer‑assisted synthesis of meta-doped TiO2 mesoporous structures for photocatalytic applications under solar simulator [J]. J. Mater. Sci-Mater. El,2020, 31(5): 4161
23 Jiang X L, Li C J, Liu S, et al. The synthesis and characterization of ytterbium-doped TiO2 hollow spheres with enhanced visible-light photocatalytic activity [J]. RSC. Adv., 2017, 7: 24598
24 Aman N, Satapathy P K, Mishra T, et al. Synthesis and photocatalytic activity of mesoporous cerium doped TiO2 as visible light sensitive photocatalyst [J]. Mater. Res. Bull, 2012, 47(2): 179
25 Zhou J, Xu L, Sun J, et al. Yolk–shell Au@CeO2 microspheres: Synthesis and application in the photocatalytic degradation of methylene blue dye [J]. Surf. Coat. Tech, 2015, 271: 119
26 Yu J G, Xiang Q J, Zhou M H. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures [J]. Applied Catalysis B: Environmental, 2009, 90: 595
27 Sun X F. Study on preparation and photocatalytic performance of TiO2 hollow sphere and its composite materials [D]. Jinan: Qilu University of Technology, 2019
孙学凤. TiO2空心球及其复合材料的制备与光催化性能研究 [D]. 济南: 齐鲁工业大学, 2019
28 Morales A E, Mora E S, Pal U. Use of diffuse reflectance spectroscopy for opticalcharacterization of un-supported nanostructures [J]. Rev. Mexic. Fisica S, 2007, 53: 18
29 Zhang B,He X,Ma X H, et al. In situ synthesis of ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst with enhanced photocatalytic activity [J]. Separation and Purification Technology, 2020, 247: 116932
30 Shi L P, Liu C, Yin H B, et al. Preparation and visible light photocatalytic activties of hollow nanospheres of Ag+/Ag-TiO2 [J]. Chinese Journal of Materials Research, 2014, 28(11): 865
石莉萍, 刘纯, 殷恒波等. Ag+/Ag-TiO2纳米空心球制备及其可见光催化性能 [J]. 材料研究学报, 2014, 28(11): 865
31 Xiang Y Q, Li Y Y, Zhang X T, et al. Hybrid CuxO-TiO2 porous hollow nanospheres: preparation [J]. RSC Adv., 2017, 7: 31619
[1] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[2] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[3] YU Moxin, KUAI Le, WANG Liang, ZHANG Chen, WANG Xiaoting, CHEN Qihou. Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74[J]. 材料研究学报, 2021, 35(9): 667-674.
[4] Zishang CHEN,Xiaoping LIANG,Xiaowei FAN,Jun WANG,Anding HUANG,Zhifeng LIU. Fabrication and Photocatalytic Properties of Ce-La-Ag Co-doped TiO2/Basalt Fiber Composite Photocatalyst[J]. 材料研究学报, 2019, 33(7): 515-522.
[5] Zhumei WANG, Xiaoling ZHU, Yueming LI, Runhua LIAO, Zongyang SHEN, Jianlin ZUO. Effect of B and Ru Co-modification on Structure and Photocatalytic Activity of TiO2 Nanotubes[J]. 材料研究学报, 2018, 32(9): 655-661.
[6] Xie LI, Xiaodong ZHU, Tingting WANG, Hui WANG. Degradation of Formaldehyde Gas by Composites of La-doped Nano ZnO/diatomite[J]. 材料研究学报, 2018, 32(9): 685-690.
[7] Ziqing LI, Wenxiu HE, Yongqiang ZHANG, Huiying YU, Xingsheng LI, Bin LIU. Effect of Different Nitrogen Sources on Structure and Properties of Nitrogen-doped Graphene[J]. 材料研究学报, 2018, 32(8): 616-624.
[8] Ailijiang TUERDI, Abdukader ABDUKAYUM, Mamutjan TURSUN, Pei CHEN. Preparation and Photocatalytic Properties of Co and N Co-doped Mesoporous TiO2[J]. 材料研究学报, 2017, 31(5): 381-386.
[9] Mingjie CAO,Ming ZHAO,Daming ZHUANG,Li GUO,Liangqi SUN Rujun OUYANG,Shilu ZHAN. Optical and Electronic Properties of Nb Doped Indium-zinc Oxide Films Grown by Magnetron Sputtering[J]. 材料研究学报, 2016, 30(9): 649-654.
[10] Dongze LV,Zhaoke CHEN,Xiang XIONG,Yalei WANG,Wei SUN,Zehao LI. Microstructure and Tribological Property of C-TaC Coatings on Graphite Prepared by Chemical Vapor Deposition[J]. 材料研究学报, 2016, 30(9): 690-696.
[11] XU Jun, CHEN Hongfei, YANG Guang, LUO Hongjie, GAO Yanfeng. Elements Diffusion and Phase Transitions in Yb/Y Co-doped Zirconia Ceramic under Molten-salt Corrosive Environment[J]. 材料研究学报, 2016, 30(8): 627-633.
[12] NIE Yanyan, SUN Xiaogang, CAI Manyuan, WU Xiaoyong, LIU Zhenhong, YUE Lifu. Graphitized Whisker-like Carbon Nanotubes as Electrodes for Supercapacitors[J]. 材料研究学报, 2016, 30(7): 538-644.
[13] ZHANG Hao, HUANG Xinjie, ZONG Zhifang, LIU Xiuyu. Preparation and Properties of SiO2 Based Hexadecanol-Palmitic Acid-Lauric Acid Microencapsulated Phase Change and Humidity Controlling Materials with Fine Particle Size[J]. 材料研究学报, 2016, 30(6): 418-426.
[14] HE Liwen, SUN Dongya, LIAN Jiqiong, LIN Bizhou. Preparation and Photocatalytic Property of Co-Doped Hydroxyl-Zr Pillared Titanate[J]. 材料研究学报, 2016, 30(4): 285-291.
[15] Zhipeng PANG,Xiaogang SUN,Xiaoyuan CHENG,Xiaoyong WU,Qi FU. Effect of Carbon Nanotube Content on Electromagnetic Interference Shielding Performance of Carbon Nanotube-Cellulose Composite Materials[J]. 材料研究学报, 2015, 29(8): 583-588.
No Suggested Reading articles found!