Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (12): 893-901    DOI: 10.11901/1005.3093.2023.609
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Paper-like Stainless Steel Fiber Coated with Boron-doped Carbon Nanotubes Catalyst and Its Application for Phenol Degradation
ZHUANG Chaojun, HU Junhui, YAN Ying()
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
Cite this article: 

ZHUANG Chaojun, HU Junhui, YAN Ying. Preparation of Paper-like Stainless Steel Fiber Coated with Boron-doped Carbon Nanotubes Catalyst and Its Application for Phenol Degradation. Chinese Journal of Materials Research, 2024, 38(12): 893-901.

Download:  HTML  PDF(10341KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new type of boron-doped carbon nanotube (B-CNT) film was successfully grown on the surface of paper- sintered stainless steel fiber (PSSF) carrier via chemical vapor deposition (CVD) method with phenylboronic acid as precursor, constituting a metal-free composite catalyst of boron-doped carbon nanotube membrane with gradient porous structure on PSSF (B-CNTs/PSSF). The B-CNTs/PSSF was characterized by means of FE-SEM, TEM, Raman, TG and XPS, and then applied to the degradation of phenol. The results showed that the prepared B-CNTs/PSSF had a better phenol degradation performance than CNTs/PSSF without B doping, with a phenol conversion rate of 100%, a total organic carbon conversion rate of 68%. Based on the density functional theory (DFT), it was found that the difference in catalytic performance comes from the stronger adsorption and mutual electron transfer of H2O2 by B-CNT than CNT.

Key words:  composite      boron doped carbon nanotubes      catalytic wet peroxide oxidation      density functional theory      metal-free catalyst     
Received:  26 December 2023     
ZTFLH:  TQ032  
Fund: National Natural Science Foundation of China(22178122)
Corresponding Authors:  YAN Ying, Tel: 13902490801, E-mail: yingyan@scut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.609     OR     https://www.cjmr.org/EN/Y2024/V38/I12/893

Fig.1  Schematic diagram of preparation of B-CNTs/PSSF composite catalysts by CVD method
Fig.2  Flowchart for phenol catalytic wet peroxide oxidation in structured fixed-bed reactor
Fig.3  SEM images of bare PSSF, CNTs/PSSF, B-CNTs/PSSF (a~c) and TEM image of B-CNTs/PSSF (d)
Fig.4  FTIR plots of CNTs/PSSF and B-CNTs/PSSF
Fig.5  Raman spectra of CNTs/PSSF catalyst and B-CNTs/PSSF
Fig.6  TG analysis of CNTs/PSSF and B-CNTs/PSSF
Fig.7  High-resolution XPS spectra of CNTs/PSSF and B-CNTs/PSSF catalysts (a)Full spectra, (b) C 1s, (c) B 1s, (d) O 1s
Fig. 8  Evaluation of catalytic performance of phenol CWPO based on different catalysts (a) H2O2 conversion; (b) phenol conversion; (c) TOC conversion; (d) pH; (e) Fe leaching concentration
Fig.9  Adsorption configuration, adsorption energy and electron density difference of CNT on H2O2 (a), adsorption configuration, adsorption energy and electron density difference of B-CNT on H2O2 (b)
1 Li H P, Meng F P. Efficiency, mechanism, influencing factors, and integrated technology of biodegradation for aromatic compounds by microalgae: a review [J]. Environ. Pollut., 2023, 335: 122248
2 Tomei M C, Angelucci D M. Enhancing biodegradation of toxic industrial wastewaters in a continuous two-phase partitioning bioreactor operated with effluent recycle [J]. Process Saf. Environ. Prot., 2019, 124: 172
3 Jiao P P. Individually recovery of gallic acid and 3, 5-dimethyl-2, 4-dichlorophenol from industry wastewater by solvent extrac-tion [D]. Changsha: Hunan University, 2016
焦盼盼. 溶剂萃取法处理高浓度含酚有机工业废水 [D]. 长沙: 湖南大学, 2016
4 Qiao X L, Fang M X, Cen J M, et al. Progress in phenol containing wastewater treatment by extraction [J]. Technol. Water Treat., 2016, 42(4): 7
乔鑫龙, 方梦祥, 岑建孟 等. 萃取法处理含酚废水的研究进展 [J]. 水处理技术, 2016, 42(4): 7
5 Zhang L P, Dai J, Wei H Y, et al. Study on high efficiency extraction of phenolic-containing wastewater from coal chemical industry [J]. Coal Sci. Technol., 2019, 47(6): 219
章丽萍, 戴 瑾, 魏含宇 等. 煤化工含酚废水高效萃取研究 [J]. 煤炭科学技术, 2019, 47(6): 219
6 Liu J Y, Zhang X J, Huang Q, et al. Research progress on the treatment of industrial phenolic wastewater over advanced adsorbent materials [J]. Technol. Water Treat., 2021, 47(2): 16
刘俊逸, 张晓昀, 黄 青 等. 先进吸附材料在含酚工业废水中应用的研究进展 [J]. 水处理技术, 2021, 47(2): 16
7 Cuerda-Correa E M, Alexandre-Franco M F, Fernández-González C. Advanced oxidation processes for the removal of antibiotics from water. An overview [J]. Water, 2020, 12: 102
8 Yang S Y, Zhang A, Ren T F, et al. Surface mechanism of carbon-based materials for catalyzing peroxide degradation of organic pollutants in water [J]. Prog. Chem., 2017, 29: 539
doi: 10.7536/PC170310
杨世迎, 张 翱, 任腾飞 等. 炭基材料催化过氧化物降解水中有机污染物: 表面作用机制 [J]. 化学进展, 2017, 29: 539
doi: 10.7536/PC170310
9 Li X F, Liang D D, Wang C X, et al. Effective defect generation and dual reaction pathways for phenol degradation on boron-doped carbon nanotubes [J]. Environ. Technol., 2022, 43: 4455
10 Li X F, Liang D D, Wang C X, et al. Insights into the peroxomonosulfate activation on boron-doped carbon nanotubes: performance and mechanisms [J]. Chemosphere, 2021, 275: 130058
11 Shao Y, Yan Y, Zhang H P. Adsorption dynamics of phenol in a fixed bed packed with activated carbon and stainless steel fiber-reinforced activated carbon paper [J]. Carbon, 2015, 93: 1087
12 Satishkumar B C, Govindaraj A, Harikumar K R, et al. Boron–carbon nanotubes from the pyrolysis of C2H2-B2H6 mixtures [J]. Chem. Phys. Lett., 1999, 300: 473
13 Chen C F, Tsai C L, Lin C L. The characterization of boron-doped carbon nanotube arrays [J]. Diamond Relat. Mater., 2003, 12: 1500
14 Sawant S V, Banerjee S, Patwardhan A W, et al. Effect of in-situ boron doping on hydrogen adsorption properties of carbon nanotubes [J]. Int. J. Hydrogen Energy, 2019, 44: 18193
15 Ayala P, Rümmeli M H, Gemming T, et al. CVD growth of single-walled B-doped carbon nanotubes [J]. Phys. Status Solidi, 2008, 245b: 1935
16 Koós A A, Dillon F, Obraztsova E A, et al. Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes [J]. Carbon, 2010, 48: 3033
17 Sharma A, Patwardhan A, Dasgupta K, et al. Kinetic study of boron doped carbon nanotubes synthesized using chemical vapour deposition [J]. Chem. Eng. Sci., 2019, 207: 1341
doi: 10.1016/j.ces.2019.06.030
18 Altuntepe A, Zan R. Permanent boron doped graphene with high homogeneity using phenylboronic acid [J]. J. Mol. Struct., 2021, 1230: 129629
19 Yang Y, Zhang H P, Yan Y. Synthesis of CNTs on stainless steel microfibrous composite by CVD: effect of synthesis condition on carbon nanotube growth and structure [J]. Composites, 2019, 160B: 369
20 Yang Y, Zhang H P, Huang H X, et al. Degradation of m-cresol over iron loaded carbon nanotube microfibrous composite: kinetic optimization and deactivation study [J]. Sep. Purif. Technol., 2021, 262: 118340
21 Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer [J]. J. Comput. Chem., 2012, 33: 580
doi: 10.1002/jcc.22885 pmid: 22162017
22 Hashempour M, Vicenzo A, Zhao F, et al. Direct growth of MWCNTs on 316 stainless steel by chemical vapor deposition: effect of surface nano-features on CNT growth and structure [J]. Carbon, 2013, 63: 330
23 Vander Wal R L, Hall L J. Carbon nanotube synthesis upon stainless steel meshes [J]. Carbon, 2003, 41: 659
24 Huang H X. Preparation of micro-fibrous nitrogen-doped carbon nanotubes coated paper-like sintered stainless steel fibers composite catalyst for catalytic degradation of phenolic wastewater [D]. Guangzhou: South China University of Technology, 2020
黄浩鑫. 微纤复合氮掺杂碳纳米管膜催化剂的制备及其催化降解含酚废水特性研究 [D]. 广州: 华南理工大学, 2020
25 Huang H X, Zhang H P, Yan Y. Preparation of novel catalyst-free Fe3C nanocrystals encapsulated NCNT structured catalyst for continuous catalytic wet peroxide oxidation of phenol [J]. J. Hazard. Mater., 2021, 407: 124371
26 Keru G, Ndungu P G, Nyamori V O. Effect of boron concentration on physicochemical properties of boron-doped carbon nanotubes [J]. Mater. Chem. Phys., 2015, 153: 323
27 Hashim D P, Narayanan N T, Romo-Herrera J M, et al. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions [J]. Sci. Rep., 2012, 2: 363
doi: 10.1038/srep00363 pmid: 22509463
28 Aviles F, Cauich-Rodríguez J V, Moo-Tah L, et al. Evaluation of mild acid oxidation treatments for MWCNT functionalization [J]. Carbon, 2009, 47: 2970
29 Osorio A G, Silveira I C L, Bueno V L, et al. H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media [J]. Appl. Surf. Sci., 2008, 255: 2485
30 Misra A, Tyagi P K, Singh M K, et al. FTIR studies of nitrogen doped carbon nanotubes [J]. Diamond Relat. Mater., 2006, 15: 385
31 Zhang J, Zou H L, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes [J]. J. Phys. Chem., 2003, 107B: 3712
32 Ma Y C, Foster A S, Krasheninnikov A V, et al. Nitrogen in graphite and carbon nanotubes: magnetism and mobility [J]. Phys. Rev., 2005, 72B: 205416
33 Teoh W C, Yeoh W M, Mohamed A R. Evaluation of different oxidizing agents on effective covalent functionalization of multiwalled carbon nanotubes [J]. Fuller. Nanotub. Carbon Nanostruct., 2018, 26: 846
34 Jorio A, Cancado L G. Perspectives on Raman spectroscopy of graphene-based systems: from the perfect two-dimensional surface to charcoal [J]. Phys. Chem. Chem. Phys., 2012, 14: 125246
35 Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nat. Nanotechnol., 2013, 8: 235
doi: 10.1038/nnano.2013.46 pmid: 23552117
36 Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy [J]. Phys. Chem. Chem. Phys., 2007, 9: 1276
pmid: 17347700
37 Kuznetsov V L, Bokova-Sirosh S N, Moseenkov S I, et al. Raman spectra for characterization of defective CVD multi-walled carbon nanotubes [J]. Phys. Status Solidi, 2014, 251b:2444
38 Sánchez-Salas R, Kashina S, Galindo R, et al. Effect of pyrrolic-N defects on the capacitance and magnetization of nitrogen-doped multiwalled carbon nanotubes [J]. Carbon, 2021, 183: 743
39 Li T J, Yeh M H, Chiang W H, et al. Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reac-tion [J]. Sens. Actuators, 2017, 248B: 288
40 Tian X Y, Zhang H P, Hu C Z, et al. Efficient and continuous removal of phenol by activating PMS via nitrogen doped carbon nanotube membrane in the structured fixed bed [J]. J. Water Process Eng., 2023, 54: 104029
41 Doğan M, Selek A, Turhan O, et al. Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage [J]. Fuel, 2021, 303: 121335
42 Scaccia S, Carewska M, Prosini P P. Study of purification process of single-walled carbon nanotubes by thermoanalytical techni-ques [J]. Thermochim. Acta, 2005, 435: 209
43 Xu M Z, Lei Y X, Ren D X, et al. Synergistic effects of functional CNTs and h-BN on enhanced thermal conductivity of epoxy/cyanate matrix composites [J]. Nanomaterials, 2018, 8: 997
44 Cao Y H, Li B, Zhong G Y, et al. Catalytic wet air oxidation of phenol over carbon nanotubes: synergistic effect of carboxyl groups and edge carbons [J]. Carbon, 2018, 133: 464
45 Duan X G, Sun H Q, Kang J, et al. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons [J]. ACS Catal., 2015, 5: 4629
46 Tang L, Liu Y N, Wang J J, et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism [J]. Appl. Catal., 2018, 231B: 1
47 Cheng Y H, Tian Y Y, Fan X Z, et al. Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reactionin in alkaline media [J]. Electrochim. Acta, 2014, 143: 291
48 Suo N, Huang H, Wu A M, et al. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution [J]. Appl. Surf. Sci., 2018, 439: 329
49 Yang L J, Jiang S J, Zhao Y, et al. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction [J]. Angew. Chem. Int. Ed., 2011, 50: 7132
doi: 10.1002/anie.201101287 pmid: 21688363
50 Liu P J, He S B, Wei H Z, et al. Characterization of α-Fe2O3/γ-Al2O3 catalysts for catalytic wet peroxide oxidation of m -cresol [J]. Ind. Eng. Chem. Res., 2015, 54: 130
51 Espinosa J C, Navalón S, Primo A, et al. Graphenes as efficient metal-free fenton catalysts [J]. Chem. -Eur. J., 2015, 21: 11966
52 Feng Y C, Zhou G M, Wang G P, et al. Removal of some impurities from carbon nanotubes [J]. Chem. Phys. Lett., 2003, 375: 645
[1] CUI Sikai, FU Guangyan, LIN Lihai, YAN Yukun, LI Chusen. Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature[J]. 材料研究学报, 2024, 38(9): 659-668.
[2] ZHANG Hengyu, HUANG Zhaodan, DUAN Tigang, WEN Qing, LI Ruocan, WU Houran, MA Li, ZHANG Haibing. Electrocatalytic Oxygen Reduction of Carbon-based Hierarchical Pt@Co Composite Catalytic Cathode in Natural Seawater[J]. 材料研究学报, 2024, 38(8): 632-640.
[3] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
[4] TAN Shangrong, YAO Zhuo, LIU Zechen, JIANG Yilei, GUO Shiqi, LI Lili. Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites[J]. 材料研究学报, 2024, 38(8): 576-584.
[5] HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. 材料研究学报, 2024, 38(8): 569-575.
[6] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[7] ZHOU Hui, DU Bin, YANG Pengbin, JIN Dangqin, XIAO Jiali, SHEN Ming, WANG Shengwen. Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities[J]. 材料研究学报, 2024, 38(7): 549-560.
[8] LIU Ying, CHEN Ping, ZHOU Xue, SUN Xiaojie, WANG Ruiqi. Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites[J]. 材料研究学报, 2024, 38(6): 453-462.
[9] BIAN Pengbo, HAN Xiuzhu, ZHANG Junfan, ZHU Shize, XIAO Bolv, MA Zongyi. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite[J]. 材料研究学报, 2024, 38(6): 401-409.
[10] XU Dongwei, ZHANG Mingju, SHEN Zhihao, XIA Chenlu, XU Jingman, GUO Xiaoqin, XIONG Xuhai, CHEN Ping. Microwave Absorption Performance of Encapsulated Magnetic Particles With Nitrogen-Doped Carbon Nanotubes Fe3O4@NCNTs[J]. 材料研究学报, 2024, 38(6): 430-436.
[11] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[12] MA Fei, WANG Chuang, GUO Wuming, SHI Xiangdong, SUN Jianying, PANG Gang. Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings[J]. 材料研究学报, 2024, 38(4): 297-307.
[13] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[14] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[15] HUO Zhaohui, WU Haojie, HE Yongqi, ZHENG Mingxiu, ZHAN Manzi, ZHANG Qitong, LIAO Xiaolin. Polyporphyrin/MXene-based Self-supporting Composite Films and Photocatalytic Degradation of Pollutants[J]. 材料研究学报, 2024, 38(12): 950-960.
No Suggested Reading articles found!