Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (6): 430-436    DOI: 10.11901/1005.3093.2023.366
ARTICLES Current Issue | Archive | Adv Search |
Microwave Absorption Performance of Encapsulated Magnetic Particles With Nitrogen-Doped Carbon Nanotubes Fe3O4@NCNTs
XU Dongwei1, ZHANG Mingju1, SHEN Zhihao1, XIA Chenlu1, XU Jingman1, GUO Xiaoqin1, XIONG Xuhai2, CHEN Ping3()
1.School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
2.Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang 110136, China
3.State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
Cite this article: 

XU Dongwei, ZHANG Mingju, SHEN Zhihao, XIA Chenlu, XU Jingman, GUO Xiaoqin, XIONG Xuhai, CHEN Ping. Microwave Absorption Performance of Encapsulated Magnetic Particles With Nitrogen-Doped Carbon Nanotubes Fe3O4@NCNTs. Chinese Journal of Materials Research, 2024, 38(6): 430-436.

Download:  HTML  PDF(10496KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

One-dimensional carbon nanotubes (CNTs) have made them candidate as lightweight broadband microwave absorption material due to their intrinsic high electrical conductivity, light weight, and high specific surface area etc. In this paper, heterostructures of magnetic particels of iron oxide encapsulated with nitrogen-doped carbon nanotubes (Fe3O4@NCNTs) have been successfully constructed in-situ by one-step pyrolysis process. The phase composition and structure of the composites were characterized by powder X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The electromagnetic parameters were measured by coaxial method and the reflection loss was simulated by Matlab. The results show that the calcination temperatures and the raw material ratio have important effect on the microwave absorption properties of nitrogen-doped magnetic functionalized carbon nanotube composites. The results demonstrated that when the calcination temperature was 750oC and the raw material ratio (metal salt/carbon source) is 2:1, the Fe3O4@NCNTs-750 hybrids with only 10% of functional fillers reached a minimum reflection loss value of -57.7 dB and a maximum effective absorption bandwidth (EAB, below -10 dB) of 6.4 GHz at 2.0 mm.

Key words:  composite      carbon nanotube      catalytic growth      microwave absorption performance      impedance matching     
Received:  22 July 2023     
ZTFLH:  TB332  
Fund: Natural Science Foundation of Henan Province(232300420332);Key Scientific Research Pro-ject of Higher Education Institutions in Henan Province(23A430006);Youth Research Funds Plan of Zhengzhou University of Aeronautics(23ZHQN01005);National Natural Science Foundation of China(51873109);Liaoning Revitalization Talents Program(XLYC1802085)
Corresponding Authors:  CHEN Ping, Tel: (0411)84986100, E-mail: Pchen@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.366     OR     https://www.cjmr.org/EN/Y2024/V38/I6/430

Fig.1  XRD, Raman patterns and XPS of Fe3O4@NCNTsunder different calcination temperatures
Fig.2  SEM and TEM images of Fe3O4@NCNTs-650 (a, b, c), Fe3O4@NCNTs-750 (d, e, f) and Fe3O4@NCNTs-850 (g, h, i)
Fig.3  Reflection loss diagrams of three dimensions and with different matching thicknesses for 650-10% (a, d), 750-10% (b, e) and 850-10% (c, f)
Fig.4  Relative complex permittivity of Fe3O4@NCNTs-X under different calcination temperatures (a) real part (ε′), (b) imaginary part (ε″), dielectric loss tangent (tanδε); relative complex permeability: (c) real part (μ′), (d) imaginary part (μ″) and (e) magnetic loss tangent (tanδμ)
Fig.5  Cole-Cole semicircles and Eddy current loss coefficient of composites under different calcination temperatures (a) Fe3O4@NCNTs-650, (b) Fe3O4@NCNTs-750, (c) Fe3O4@NCNTs-850 and (d) C0
Fig.6  Attenuation constant (α) of Fe3O4@NCNTs-X calcinated under different temperatures
1 Yang Z T, Wang T, Wang J F, et al. Heterogeneous N-doped carbon composite NiSe2-FeSe double-shell hollow nanorods for tunable and high-efficient microwave attenuation [J]. Carbon, 2023, 201: 491
2 Zhao H H, Han X J, Li Z N, et al. Reduced graphene oxide decorated with carbon nanopolyhedrons as an efficient and light weight microwave absorber [J]. J Colloid Interf. Sci., 2018, 528: 174
3 Cheng Z, Wang R F, Cao Y S, et al. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel [J]. Adv. Funct. Mater., 2022, 2205160
4 Wang Y, Gao X, Lin C H, et al. Metal organic frameworks-derived Fe-Co nanoporous carbon/graphene composite as a high-performance electromagnetic wave absorber [J]. J. Alloys Compds., 2019, 785: 765
5 Xu D W, Ren Y M, Guo X Q, et al. Synthesis of super-hydrophobic and self-cleaning magnetic graphene aerogel with excellent microwave absorption properties [J]. Diam. Relat. Mater., 2022, 126:109045
6 Liu J, Cao M S, Luo Q, et al. Electromagnetic property and tunable microwave absorption of 3D nets from nickel chains at elevated temperature [J]. ACS Appl. Mater. Interfaces., 2016, 8: 22615
7 Yang M L, Yuan Y, Yin W L, et al. Co/CoO@C nanocomposites with a hierarchical bowknot-like nanostructure for high performance broadband electromagnetic wave absorption [J]. Appl. Surf. Sci., 2019, 469: 607
8 Wang Y, Gao X, Wu X M, et al. Facile design of 3D hierarchical NiFe2O4/N-GN/ZnO composite as a high performance electromagnetic wave absorber [J]. Chem. Eng. J., 2019, 375: 121942
9 Wang C H, Ding Y J, Yuan Y, et al. Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption [J]. J. Mater. Chem. C., 2015, 3: 11893
10 Liu P B, Zhang Y Q, Yan J, et al. Synthesis of light weight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption [J]. Chem. Eng. J., 2019, 368: 285
11 Xu D W, Ren Y M, Guo X Q, et al. Multiscale core-shell CoO@Co€PGN/CNTs composites aerogels for ultra-wide microwave absorption [J]. Compos. Sci. Technol., 2022, 225: 109524
12 Xia Y X, Gao W W, Gao C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption [J]. Adv. Funct. Mater., 2022, 2204591
13 Zhi D D, Li T, Li J Z, et al. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption [J]. Compos. Part B-Eng., 2021, 211: 108642
14 Ding D, Wang Y, Li X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption [J]. Carbon, 2017, 111: 722
15 Miao P, Chen J X, Tang Y S, et al. Highly efficient and broad electromagnetic wave absorbers tuned via topology-controllable metal-organic frameworks [J]. Sci. China Mater., 2020, 63: 2050
16 Wang Y Q, Zhao H B, Cheng J B, et al. Hierarchical­Ti3C2T x @ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins [J]. Nano-Micro Lett. 2022, 14: 76
17 Guo R D, Su D, Chen F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption [J]. ACS Appl. Mater. Interfaces., 2022, 14: 3084
18 Dong Y Y, Zhu X J, Pan F, et al. Mace‑like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high‑efficient electromagnetic wave absorber [J]. Adv. Compos. Hybrid Mater., 2021, 4: 1002
19 Zhang Y Y, Yu Y, Yuan Y, et al. Reduced graphene oxide-wrapped Fe-Fe3O4@mSiO2 hollow core-shell composites with enhanced electromagnetic wave absorption properties [J]. J. Mater. Chem. C., 2022, 10: 15620
20 Zhang Y H, Meng H J, Shi Y P, et al. TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption [J]. Compos. Part B-Eng., 2020, 193: 108028
21 Ge J W, Cui Y, Qian J X, et al. Morphology-controlled CoNi/C hybrids with bifunctions of efficient anti-corrosion and microwave absorption [J]. J. Mater. Sci. Technol., 2022, 102: 24
doi: 10.1016/j.jmst.2021.07.003
22 Quan B, Liang X H, Yi H, et al. Thermal conversion of wheat-like metal organic frameworks to achieve MgO/carbon composites with tunable morphology and microwave response [J]. J. Mater. Chem. C., 2018, 6: 11659
23 Zhang Z W, Cai Z H, Wang Z Y, et al. A review on metal-organic framework‑derived porous carbon‑based novel microwave absorption materials [J]. Nano-Micro. Lett., 2021, 13: 56
24 Zhu X Y, Qiu H F, Chen P. Modified graphitic carbon nitride (MCN)/Fe3O4 composite as a super electromagnetic wave absorber [J]. J. Mater. Chem. A., 2021, 9:23643
25 Xu D W, Guo H H, Zhang F F, et al. In situ formation of CoS2 hollow nanoboxes via ion-exchange for high-performance microwave absorption [J]. Nanomaterials, 2022, 12: 2876
[1] LIU Ying, CHEN Ping, ZHOU Xue, SUN Xiaojie, WANG Ruiqi. Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites[J]. 材料研究学报, 2024, 38(6): 453-462.
[2] BIAN Pengbo, HAN Xiuzhu, ZHANG Junfan, ZHU Shize, XIAO Bolv, MA Zongyi. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite[J]. 材料研究学报, 2024, 38(6): 401-409.
[3] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[4] MA Fei, WANG Chuang, GUO Wuming, SHI Xiangdong, SUN Jianying, PANG Gang. Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings[J]. 材料研究学报, 2024, 38(4): 297-307.
[5] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[6] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[7] LI Zhaoyang, XUE Yi, YANG Zehao, ZHAO Qingzhi, PENG Yanshuang, LIU Yong, YANG Jianping, ZHANG Hui. Performance of Interlayer Toughened Carbon Fiber/Epoxy Composites of Polyethersulfone Porous Fiber Veil[J]. 材料研究学报, 2024, 38(1): 33-42.
[8] XU Dongwei, WANG Ruiqi, CHEN Ping. Research Progress of Graphene-based Absorbing Composites[J]. 材料研究学报, 2024, 38(1): 1-13.
[9] MA Yuan, WANG Han, NI Zhongqiang, ZHANG Jiangang, ZHANG Ruonan, SUN Xinyang, LI Chusen, LIU Chang, ZENG You. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2024, 38(1): 61-70.
[10] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[11] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[12] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[13] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[14] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[15] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
No Suggested Reading articles found!