|
|
Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites |
LIU Ying, CHEN Ping( ), ZHOU Xue, SUN Xiaojie, WANG Ruiqi |
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China |
|
Cite this article:
LIU Ying, CHEN Ping, ZHOU Xue, SUN Xiaojie, WANG Ruiqi. Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites. Chinese Journal of Materials Research, 2024, 38(6): 453-462.
|
Abstract A novel composite hollow FeS2/NiS2/Ni3S2@NC cube is synthesized through collaborative etch-precipitation (CEP) route, high-temperature calcination, polydopamine coating and high-temperature vulcanization with a pre-prepared Cu2O cube as sacrificial template. The preparation process is safe, while Ni and Fe are successfully incorporated through the CEP route. The hollow cube structure can effectively restrain the volume expansion and slow down the mechanical stress caused by lithium-ion embedding and release. The introduction of N-doped carbon layer (NC) can greatly improve the conductivity and structural stability of the composite material, so that it can better maintain the stability of the cube structure. Furthermore, after 100 cycles at a current density of 0.2 A·g-1, the specific discharge capacity of the FeS2/NiS2/Ni3S2@NC cube composite can be maintained at 899.4 mAh·g-1, showing high specific capacity, good cycle stability, and great rate performance (427.5 mAh·g-1 at 3.0 A·g-1).
|
Received: 17 May 2023
|
|
Fund: Liaoning Revitalization Talents Program(XLYC1802085);National Natural Science Foundation of China(51873109);Dalian Science and Technology Innovation Fund Project(2019J11CY007) |
Corresponding Authors:
CHEN Ping, Tel: (0411)84986100, E-mail: pchen@dlut.edu.cn
|
1 |
Xiao Y D, Jin X Z, Huang H, et al. Preparation and electrochemical behavior of MoP nanoparticles as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2019, 33: 65
doi: 10.11901/1005.3093.2017.793
|
|
肖雅丹, 靳晓哲, 黄 昊 等. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 [J]. 材料研究学报, 2019, 33: 65
doi: 10.11901/1005.3093.2017.793
|
2 |
Xia A, Zhao C P, Zeng X X, et al. Preparation and electrochemical properties of B-doped MnO2 [J]. Chin. J. Mater. Res., 2021, 35: 36
|
|
夏 傲, 赵晨鹏, 曾啸雄 等. B掺杂MnO2的制备及其电化学性能 [J]. 材料研究学报, 2021, 35: 36
|
3 |
Xu J J, Cai X Y, Cai S M, et al. High‐energy lithium‐ion batteries: recent progress and a promising future in applications [J]. Energy Environ. Mater., 2023, 12450: 1
|
4 |
Clarke M, Alonso J J. Lithium-ion battery modeling for aerospace applications [J]. J. Aircraft, 2021, 58: 1323
|
5 |
Yang D D, Zhao M, Zhang R D, et al. NiS2 nanoparticles anchored on open carbon nanohelmets as an advanced anode for lithium-ion batteries [J]. Nanoscale Adv., 2020, 2: 512
doi: 10.1039/c9na00661c
pmid: 36134007
|
6 |
Liu H G, Jing R X, Wang Z L, et al. FeS2 encapsulated with mesoporous carbon for high-performance lithium-ion batteries [J]. MRS Commun., 2021, 11: 418
|
7 |
Zheng T, Li G D, Meng X G, et al. Porous core-shell CuCo2S4 nanospheres as anode material for enhanced lithium-ion batteries [J]. Chem. Eur. J., 2019, 25(3): 885
|
8 |
Gu C P, Hong Y, Wang X, et al. Fabrication of hollow SnO2/ZnS@C nanocubes as anode materials for advanced lithium-ion battery [J]. J. Alloys Compd., 2021, 878: 160375
|
9 |
Xiong X L, Yue J M, Zhou A X, et al. Electrochemical performance of spinel LiMn2O4 in Water-in-salt aqueous electrolyte [J]. Energy Storage Sci. Technol., 2020, 9(2): 375
|
|
熊小琳, 岳金明, 周安行 等. 尖晶石锰酸锂正极在Water-in-salt电解液中的电化学性能 [J]. 储能科学与技术, 2020, 9(2): 375
doi: 10.19799/j.cnki.2095-4239.2020.0069
|
10 |
Wei X J, Zhang Y B, Zhang B K, et al. Yolk-shell-structured zinc-cobalt binary metal sulfide@N-doped carbon for enhanced lithium-ion storage [J]. Nano Energy, 2019, 64: 103899
|
11 |
Xu S T, Zhang Z F, Wu T Y, et al. Nanoporous carbon microspheres as anode material for enhanced capacity of lithium ion batteries [J]. Ionics, 2018, 24: 99
|
12 |
Gong H, Kang Y, Zhang R, et al. Preparation of nitrogen-doped carbon dots for highly sensitive detection of amoxicillin [J]. Chin. J. Appl. Chem., 2020, 37(2): 227
doi: 10.11944/j.issn.1000-0518.2020.02.190226
|
|
弓 辉, 康 玉, 张 荣 等. 氮掺杂碳点的制备及其对阿莫西林高灵敏检测 [J]. 应用化学, 2020, 37(2): 227
|
13 |
Liu J, Wang J S, Zhang B, et al. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity [J]. ACS Appl. Mater. Interfaces, 2017, 9: 15364
|
14 |
Li Y L, Yan X H, Zhang W J, et al. Hierarchical micro-nano structure based NiCoAl-LDH nanosheets reinforced by NiCo2S4 on carbon cloth for asymmetric supercapacitor [J]. J. Electroanal. Chem., 2022, 905: 115982
|
15 |
Li J, Zheng J Q, Wu C K, et al. Facile synthesis of Fe3S4 microspheres as advanced anode materials for alkaline iron-based rechargeable batteries [J]. J. Alloys Compd., 2021, 874: 103899
|
16 |
Wu C K, Zheng J Q, Li J, et al. Fe3S4@reduced graphene oxide composites as novel anode materials for high performance alkaline secondary batteries [J]. J. Alloys Compd., 2022, 895: 162593
|
17 |
Guo S P, Li J C, Xiao J R, et al. Fe3S4 nanoparticles wrapped in an rGO matrix for promising energy storage: outstanding cyclic and rate performance [J]. ACS Appl. Mater. Interfaces, 2017, 9: 37694
|
18 |
Zuo X T, Song Y, Zhen M M. Carbon-coated NiCo2S4 multi-shelled hollow microspheres with porous structures for high rate lithium ion battery applications [J]. Appl. Surf. Sci., 2020, 500: 144000
|
19 |
Geng H B, Su H, Lin C H, et al. Double-layer N, S-codoped carbon protection of MnS nanoparticles enabling ultralong-life and high-rate lithium ion storage [J]. ACS Appl. Energy Mater., 2018, 1: 4867
|
20 |
Wang P, Yuan A H, Wang Z T, et al. Self-templated formation of hierarchically yolk-shell-structured ZnS/NC dodecahedra with superior lithium storage properties [J]. Nanoscale, 2021, 13: 1988
doi: 10.1039/d0nr07450k
pmid: 33443501
|
21 |
Yang T, Tian L L, Zhou E M, et al. Design of Ni(OH)2 nanocages@MnO2 nanosheets core-shell architecture to jointly facilitate electrocatalytic dynamic for highly sensitive detection of dopamine [J]. Biosens. Bioelectron., 2019, 143: 111634
|
22 |
Li X, He G G, Tian L L, et al. Preparation of NiCo2O4 nanocages and its applications in supercapacitors [J]. New Chem. Mater., 2022, 50(11): 229
|
|
李 雪, 贺格格, 田亮亮 等. NiCo2O4纳米笼的制备及其在超级电容器中的应用 [J]. 化工新型材料, 2022, 50(11): 229
|
23 |
Xu X K, Zhou Y M, You H R, et al. Engineering nano-NiS2 embedded in graphitized carbon skeleton in hollow spherical structure as stable anode material for reversible Li+ storage [J]. Appl. Surf. Sci., 2022, 605: 154758
|
24 |
Chen H J, Wang Y, Ma X D, et al. Cation-adsorption-assisted Ni3S2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes [J]. J. Mater. Sci., 2020, 55(36): 17081
|
25 |
Wang J, Fang J J, Zhao H L, et al. Raspberry-like hierarchical structure FeS2 decorated by dual-carbon framework as high-performance cathode for rechargeable lithium batteries [J]. Carbon, 2021, 171: 171
|
26 |
Li D, Li X W, Hou X Y, et al. Building a Ni3S2 nanotube array and investigating its application as an electrode for lithium ion batteries [J]. Chem. Commun., 2014, 50(66): 9361
|
27 |
Murphin Kumar P S, Ponnusamy V, Kim H I, et al. Molybdenum-doped nickel disulfide (NiS2:Mo) microspheres as an active anode material for high-performance durable lithium-ion batteries [J]. ACS Appl. Energy Mater., 2022, 5(6): 6734
|
28 |
Xu Q T, Li J C, Xue H G, et al. Effective combination of FeS2 microspheres and Fe3S4 microcubes with rGO as anode material for high-capacity and long-cycle lithium-ion batteries [J]. J. Power Sources, 2018, 396: 675
|
29 |
Yang R, Wang C, Li Y F, et al. Construction of FeS2@C coated with reduced graphene oxide as high-performance anode for lithium-ion batteries [J]. J. Electroanal. Chem., 2022, 918: 116467
|
30 |
Liu Q, Chen Z Z, Qin R, et al. Hierarchical mulberry-like Fe3S4/Co9S8 nanoparticles as highly reversible anode for lithium-ion batteries [J]. Electrochim. Acta, 2019, 304: 405
|
31 |
Xiao L, Yu W H, Huang H, et al. Preparation and performance of TiS3 nanoflakes as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2022, 36: 822
|
|
肖 揽, 于文华, 黄 昊 等. 锂离子电池负极材料TiS3纳米片的制备和性能 [J]. 材料研究学报, 2022, 36: 822
|
32 |
Mao W T, Ding Y M, Li M L, et al. Construction of a poly(anthraquinone sulfide)/carbon nanotube composite with enhanced Li‐ion storage capacity [J]. ChemElectroChem, 2021, 8: 1678
|
33 |
Zhang H K, Liu J Y, Lin X R, et al. A novel binary metal sulfide hybrid Li-ion battery anode: three-dimensional ZnCo2S4/NiCo2S4 derived from metal-organic foams enables an improved electron transfer and ion diffusion performance [J]. J. Alloys Compd., 2020, 817: 153293
|
34 |
Dong X F, Chen F J, Chen G G, et al. NiS2 nanodots on N, S-doped graphene synthesized via interlayer confinement for enhanced lithium-/sodium-ion storage [J]. J. Colloid Interf. Sci., 2022, 619: 359
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|