Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (6): 453-462    DOI: 10.11901/1005.3093.2023.261
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites
LIU Ying, CHEN Ping(), ZHOU Xue, SUN Xiaojie, WANG Ruiqi
State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

LIU Ying, CHEN Ping, ZHOU Xue, SUN Xiaojie, WANG Ruiqi. Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites. Chinese Journal of Materials Research, 2024, 38(6): 453-462.

Download:  HTML  PDF(11621KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel composite hollow FeS2/NiS2/Ni3S2@NC cube is synthesized through collaborative etch-precipitation (CEP) route, high-temperature calcination, polydopamine coating and high-temperature vulcanization with a pre-prepared Cu2O cube as sacrificial template. The preparation process is safe, while Ni and Fe are successfully incorporated through the CEP route. The hollow cube structure can effectively restrain the volume expansion and slow down the mechanical stress caused by lithium-ion embedding and release. The introduction of N-doped carbon layer (NC) can greatly improve the conductivity and structural stability of the composite material, so that it can better maintain the stability of the cube structure. Furthermore, after 100 cycles at a current density of 0.2 A·g-1, the specific discharge capacity of the FeS2/NiS2/Ni3S2@NC cube composite can be maintained at 899.4 mAh·g-1, showing high specific capacity, good cycle stability, and great rate performance (427.5 mAh·g-1 at 3.0 A·g-1).

Key words:  composite      lithium-ion batteries      anode materials      transition metal sulfides     
Received:  17 May 2023     
ZTFLH:  TM 912  
Fund: Liaoning Revitalization Talents Program(XLYC1802085);National Natural Science Foundation of China(51873109);Dalian Science and Technology Innovation Fund Project(2019J11CY007)
Corresponding Authors:  CHEN Ping, Tel: (0411)84986100, E-mail: pchen@dlut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.261     OR     https://www.cjmr.org/EN/Y2024/V38/I6/453

Fig.1  Schematic diagram of preparation of hollow FeS2/NiS2/Ni3S2@NC cube
Fig.2  XRD patterns of Cu2O (a), XRD patterns of NF-OH and NFO (b), XRD patterns of FeS2/NiS2/Ni3S2@NC and FeS2/NiS2/Ni3S2 (c) and Raman spectra of FeS2/NiS2/Ni3S2@NC (d)
Fig.3  IR spectra (a) and N2 absorption/desorption isotherm and pore size distribution curve (b) of FeS2/NiS2/Ni3S2@NC
Fig.4  Survey scan of FeS2/NiS2/Ni3S2@NC (a) and XPS high-resolution spectrum of Ni 2p (b), Fe 2p (c), S 2p (d), C 1s (e), N 1s (f)
Fig.5  SEM images of Cu2O (a), NF-OH (b), FeS2/NiS2/Ni3S2 (c), FeS2/NiS2/Ni3S2@NC (d)
Fig.6  TEM images of FeS2/NiS2/Ni3S2@NC with different magnifications (a, b), HRTEM image of FeS2/NiS2/Ni3S2@NC (c) and and corresponding EDS elemental mapping images (d) of FeS2/NiS2/Ni3S2@NC
Fig.7  CV curves of FeS2/NiS2/Ni3S2@NC at the scan rate of 0.1 mV·s-1 (a), GCD profiles of FeS2/NiS2/Ni3S2@NC for the 1st, 2nd, 5th, 10th, 50th and 100th cycles at the current density of 0.2 A·g-1 (b), the rate capability (c) and the cycling performance (d) at the current density of 0.2 A·g-1 of FeS2/NiS2/Ni3S2@NC and FeS2/NiS2/Ni3S2
Fig.8  Composion at the current density of 1.0 A·g-1 after 500 cycles of FeS2/NiS2/Ni3S2@NC and FeS2/NiS2/Ni3S2
Fig.9  EIS spectra of FeS2/NiS2/Ni3S2@NC and FeS2/NiS2/Ni3S2 (a) before the cycle and FeS2/NiS2/Ni3S2@NC after 100 cycles (b)
Fig.10  CV curves of FeS2/NiS2/Ni3S2@NC at various scan rates (a), the ratios of lg(i) to lg(ʋ) at different oxidation/reduction peaks (b), the contribution of capacitance and diffusion controlled capacitance at different scan rates (c), the proportions of capacitance in the total charge contribution (d) at a scan rate of 0.8 mV·s-1
1 Xiao Y D, Jin X Z, Huang H, et al. Preparation and electrochemical behavior of MoP nanoparticles as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2019, 33: 65
doi: 10.11901/1005.3093.2017.793
肖雅丹, 靳晓哲, 黄 昊 等. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 [J]. 材料研究学报, 2019, 33: 65
doi: 10.11901/1005.3093.2017.793
2 Xia A, Zhao C P, Zeng X X, et al. Preparation and electrochemical properties of B-doped MnO2 [J]. Chin. J. Mater. Res., 2021, 35: 36
夏 傲, 赵晨鹏, 曾啸雄 等. B掺杂MnO2的制备及其电化学性能 [J]. 材料研究学报, 2021, 35: 36
3 Xu J J, Cai X Y, Cai S M, et al. High‐energy lithium‐ion batteries: recent progress and a promising future in applications [J]. Energy Environ. Mater., 2023, 12450: 1
4 Clarke M, Alonso J J. Lithium-ion battery modeling for aerospace applications [J]. J. Aircraft, 2021, 58: 1323
5 Yang D D, Zhao M, Zhang R D, et al. NiS2 nanoparticles anchored on open carbon nanohelmets as an advanced anode for lithium-ion batteries [J]. Nanoscale Adv., 2020, 2: 512
doi: 10.1039/c9na00661c pmid: 36134007
6 Liu H G, Jing R X, Wang Z L, et al. FeS2 encapsulated with mesoporous carbon for high-performance lithium-ion batteries [J]. MRS Commun., 2021, 11: 418
7 Zheng T, Li G D, Meng X G, et al. Porous core-shell CuCo2S4 nanospheres as anode material for enhanced lithium-ion batteries [J]. Chem. Eur. J., 2019, 25(3): 885
8 Gu C P, Hong Y, Wang X, et al. Fabrication of hollow SnO2/ZnS@C nanocubes as anode materials for advanced lithium-ion battery [J]. J. Alloys Compd., 2021, 878: 160375
9 Xiong X L, Yue J M, Zhou A X, et al. Electrochemical performance of spinel LiMn2O4 in Water-in-salt aqueous electrolyte [J]. Energy Storage Sci. Technol., 2020, 9(2): 375
熊小琳, 岳金明, 周安行 等. 尖晶石锰酸锂正极在Water-in-salt电解液中的电化学性能 [J]. 储能科学与技术, 2020, 9(2): 375
doi: 10.19799/j.cnki.2095-4239.2020.0069
10 Wei X J, Zhang Y B, Zhang B K, et al. Yolk-shell-structured zinc-cobalt binary metal sulfide@N-doped carbon for enhanced lithium-ion storage [J]. Nano Energy, 2019, 64: 103899
11 Xu S T, Zhang Z F, Wu T Y, et al. Nanoporous carbon microspheres as anode material for enhanced capacity of lithium ion batteries [J]. Ionics, 2018, 24: 99
12 Gong H, Kang Y, Zhang R, et al. Preparation of nitrogen-doped carbon dots for highly sensitive detection of amoxicillin [J]. Chin. J. Appl. Chem., 2020, 37(2): 227
doi: 10.11944/j.issn.1000-0518.2020.02.190226
弓 辉, 康 玉, 张 荣 等. 氮掺杂碳点的制备及其对阿莫西林高灵敏检测 [J]. 应用化学, 2020, 37(2): 227
13 Liu J, Wang J S, Zhang B, et al. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity [J]. ACS Appl. Mater. Interfaces, 2017, 9: 15364
14 Li Y L, Yan X H, Zhang W J, et al. Hierarchical micro-nano structure based NiCoAl-LDH nanosheets reinforced by NiCo2S4 on carbon cloth for asymmetric supercapacitor [J]. J. Electroanal. Chem., 2022, 905: 115982
15 Li J, Zheng J Q, Wu C K, et al. Facile synthesis of Fe3S4 microspheres as advanced anode materials for alkaline iron-based rechargeable batteries [J]. J. Alloys Compd., 2021, 874: 103899
16 Wu C K, Zheng J Q, Li J, et al. Fe3S4@reduced graphene oxide composites as novel anode materials for high performance alkaline secondary batteries [J]. J. Alloys Compd., 2022, 895: 162593
17 Guo S P, Li J C, Xiao J R, et al. Fe3S4 nanoparticles wrapped in an rGO matrix for promising energy storage: outstanding cyclic and rate performance [J]. ACS Appl. Mater. Interfaces, 2017, 9: 37694
18 Zuo X T, Song Y, Zhen M M. Carbon-coated NiCo2S4 multi-shelled hollow microspheres with porous structures for high rate lithium ion battery applications [J]. Appl. Surf. Sci., 2020, 500: 144000
19 Geng H B, Su H, Lin C H, et al. Double-layer N, S-codoped carbon protection of MnS nanoparticles enabling ultralong-life and high-rate lithium ion storage [J]. ACS Appl. Energy Mater., 2018, 1: 4867
20 Wang P, Yuan A H, Wang Z T, et al. Self-templated formation of hierarchically yolk-shell-structured ZnS/NC dodecahedra with superior lithium storage properties [J]. Nanoscale, 2021, 13: 1988
doi: 10.1039/d0nr07450k pmid: 33443501
21 Yang T, Tian L L, Zhou E M, et al. Design of Ni(OH)2 nanocages@MnO2 nanosheets core-shell architecture to jointly facilitate electrocatalytic dynamic for highly sensitive detection of dopamine [J]. Biosens. Bioelectron., 2019, 143: 111634
22 Li X, He G G, Tian L L, et al. Preparation of NiCo2O4 nanocages and its applications in supercapacitors [J]. New Chem. Mater., 2022, 50(11): 229
李 雪, 贺格格, 田亮亮 等. NiCo2O4纳米笼的制备及其在超级电容器中的应用 [J]. 化工新型材料, 2022, 50(11): 229
23 Xu X K, Zhou Y M, You H R, et al. Engineering nano-NiS2 embedded in graphitized carbon skeleton in hollow spherical structure as stable anode material for reversible Li+ storage [J]. Appl. Surf. Sci., 2022, 605: 154758
24 Chen H J, Wang Y, Ma X D, et al. Cation-adsorption-assisted Ni3S2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes [J]. J. Mater. Sci., 2020, 55(36): 17081
25 Wang J, Fang J J, Zhao H L, et al. Raspberry-like hierarchical structure FeS2 decorated by dual-carbon framework as high-performance cathode for rechargeable lithium batteries [J]. Carbon, 2021, 171: 171
26 Li D, Li X W, Hou X Y, et al. Building a Ni3S2 nanotube array and investigating its application as an electrode for lithium ion batteries [J]. Chem. Commun., 2014, 50(66): 9361
27 Murphin Kumar P S, Ponnusamy V, Kim H I, et al. Molybdenum-doped nickel disulfide (NiS2:Mo) microspheres as an active anode material for high-performance durable lithium-ion batteries [J]. ACS Appl. Energy Mater., 2022, 5(6): 6734
28 Xu Q T, Li J C, Xue H G, et al. Effective combination of FeS2 microspheres and Fe3S4 microcubes with rGO as anode material for high-capacity and long-cycle lithium-ion batteries [J]. J. Power Sources, 2018, 396: 675
29 Yang R, Wang C, Li Y F, et al. Construction of FeS2@C coated with reduced graphene oxide as high-performance anode for lithium-ion batteries [J]. J. Electroanal. Chem., 2022, 918: 116467
30 Liu Q, Chen Z Z, Qin R, et al. Hierarchical mulberry-like Fe3S4/Co9S8 nanoparticles as highly reversible anode for lithium-ion batteries [J]. Electrochim. Acta, 2019, 304: 405
31 Xiao L, Yu W H, Huang H, et al. Preparation and performance of TiS3 nanoflakes as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2022, 36: 822
肖 揽, 于文华, 黄 昊 等. 锂离子电池负极材料TiS3纳米片的制备和性能 [J]. 材料研究学报, 2022, 36: 822
32 Mao W T, Ding Y M, Li M L, et al. Construction of a poly(anthraquinone sulfide)/carbon nanotube composite with enhanced Li‐ion storage capacity [J]. ChemElectroChem, 2021, 8: 1678
33 Zhang H K, Liu J Y, Lin X R, et al. A novel binary metal sulfide hybrid Li-ion battery anode: three-dimensional ZnCo2S4/NiCo2S4 derived from metal-organic foams enables an improved electron transfer and ion diffusion performance [J]. J. Alloys Compd., 2020, 817: 153293
34 Dong X F, Chen F J, Chen G G, et al. NiS2 nanodots on N, S-doped graphene synthesized via interlayer confinement for enhanced lithium-/sodium-ion storage [J]. J. Colloid Interf. Sci., 2022, 619: 359
[1] BIAN Pengbo, HAN Xiuzhu, ZHANG Junfan, ZHU Shize, XIAO Bolv, MA Zongyi. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite[J]. 材料研究学报, 2024, 38(6): 401-409.
[2] XU Dongwei, ZHANG Mingju, SHEN Zhihao, XIA Chenlu, XU Jingman, GUO Xiaoqin, XIONG Xuhai, CHEN Ping. Microwave Absorption Performance of Encapsulated Magnetic Particles With Nitrogen-Doped Carbon Nanotubes Fe3O4@NCNTs[J]. 材料研究学报, 2024, 38(6): 430-436.
[3] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[4] MA Fei, WANG Chuang, GUO Wuming, SHI Xiangdong, SUN Jianying, PANG Gang. Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings[J]. 材料研究学报, 2024, 38(4): 297-307.
[5] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[6] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[7] LI Zhaoyang, XUE Yi, YANG Zehao, ZHAO Qingzhi, PENG Yanshuang, LIU Yong, YANG Jianping, ZHANG Hui. Performance of Interlayer Toughened Carbon Fiber/Epoxy Composites of Polyethersulfone Porous Fiber Veil[J]. 材料研究学报, 2024, 38(1): 33-42.
[8] MA Yuan, WANG Han, NI Zhongqiang, ZHANG Jiangang, ZHANG Ruonan, SUN Xinyang, LI Chusen, LIU Chang, ZENG You. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2024, 38(1): 61-70.
[9] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[10] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[11] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[12] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[13] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[15] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
No Suggested Reading articles found!