Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (5): 343-352    DOI: 10.11901/1005.3093.2021.300
ARTICLES Current Issue | Archive | Adv Search |
Effect of Heat Treatment Process on Microstructure and Properties of a 0.1%C-3% Mn Medium Manganese Steel of High-formability
ZHOU Yonglang, WANG Guantao, WANG Lijun(), LIU Chunming
School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

ZHOU Yonglang, WANG Guantao, WANG Lijun, LIU Chunming. Effect of Heat Treatment Process on Microstructure and Properties of a 0.1%C-3% Mn Medium Manganese Steel of High-formability. Chinese Journal of Materials Research, 2022, 36(5): 343-352.

Download:  HTML  PDF(24548KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The phase transition behavior of 0.1%C-3%Mn medium manganese steel was studied via thermal simulation with L78RITA automatic phase transformation instrument, meanwhile the effect of one-step and two-step austenite reverted transformation (ART) treatment on the microstructure and mechanical properties of the steel were also investigated. The results show that the two-step ART treatment produces more residual austenite than the one-step ART treatment, which can significantly improve the forming property of the steel. The hot rolled steel samples were pretreated at 740℃ and then heated to different temperatures for ART treatment, and it was found that 12%~14% of the retained austenite could be produced after treatment in temperature range of 660℃~680℃, which made the total elongation higher than 35% and the uniform elongation higher than 20% of the steel respectively. The steel heat treated in conditions of 740℃×0.5 h+670℃×1.0 h has the best comprehensive properties, namely the yield strength is 470 MPa, the tensile strength is 680 MPa, the total elongation is 40.7%, the uniform elongation is up to 25%, and the impact absorption energy is 163 J.

Key words:  metallic materials      medium manganese steel      two-step ART treatment      microstructure      mechanical properties      retained austenite     
Received:  11 May 2021     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(51571053)
About author:  WANG Lijun, Tel: (024)83691575, E-mail: lijunwang@mail.neu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.300     OR     https://www.cjmr.org/EN/Y2022/V36/I5/343

CSiMnPSAlTiN
0.10.33.10.0080.0020.030.020.0041
Table 1  chemical composition of experimental steel (mass fraction, %)
Fig.1  Microstructures of hot-rolled plate (a) and microstructures (b) and dilatation curve (c) of thermal dilatation simulation sample after cooling at 0.5℃/s, during cooling stage revealing the phase transiformation
Fig.2  Thermal dilatation curves and microstructures of samples treated at different temperature for 1.5 h (a) thermal dilatation curve and (b) microstructure for 660℃, (c) thermal dilatation curve and (d) microstructure for 680℃
Fig.3  Microstructure of experimental steel after ART annealing at 670℃×2.0 h
Fig.4  Microstructure of sample treated by the two-step ART pre-treatment (a) 720℃×1.0 h, (b) 740℃×1.0 h; and (c) the thermal dilatation curve during the cooling process after 740℃×1.0 h
Fig.5  Microstructures of sample treated by two-step ART treatment (a) pretreatment at 740℃×0.5 h, (b) 740℃×0.5 h+650℃×1.0 h, (c) 740℃×0.5 h+660℃×1.0 h, (d) 740℃×0.5 h+670℃×1.0 h, (e) 740℃×0.5 h+680℃×1.0 h, (f) 740℃×0.5 h→670℃×1.0 h
Heat treatment

VAr

/%

Cγ

/%

Rp0.2

/MPa

Rm

/MPa

At

/%

Au

/%

Akv

/J

PSE

/GPa·%

740℃×0.5 h+650℃×1.0 h6.70.6750366834.017.0>25022.71
740℃×0.5 h+660℃×1.0 h12.50.7149268140.724.0>25027.72
740℃×0.5 h+670℃×1.0 h14.10.7047668640.725.022927.92
740℃×0.5 h+680℃×1.0 h14.40.7248778837.322.016329.39
740℃×0.5 h→670℃×1.0 h1.70.61531100020.510%2820.53
Table 2  Retained austenite content, carbon content of retained austenite and mechanical properties of experimental steel treated by two-step ART treatment
Fig.6  Stress-strain curve of the specimens treated by two-step ART treatment
Fig.7  Phase map (a) for BCC (red) and FCC (blue) phases, inverse pole figure (IPF) map (b) of sample subjected to two-step ART treatment: 740℃×0.5 h+670℃×1.0 h
Fig.8  TEM images after heat treatment of 740℃×0.5 h+670℃×1.0 h (a) bright field image and (b) dark field image showing blocky austenite (γB), (c) bright field image and (d) dark field image showing lathy austenite (γL)
Fig.9  STEM image (a) and EDS mapping (b) of Mn in sample treated by 740℃×0.5 h+670℃×1.0 h
1 Hu H, Xu G, Li W, et al. The effects of Nb and Mo addition on transformation and properties in low carbon bainitic steels [J]. Mater. Des., 2015, 84(5): 95
doi: 10.1016/j.matdes.2015.06.133
2 Li X L, Wang Z D, Deng X T, et al. Effect of final temperature after ultrafast cooling on microstructural evolution and precipitation behavior of Nb-V-Ti bearing low alloy steel [J]. Acta Metall. Sin., 2015, 51(7): 784
李小琳, 王昭东, 邓想涛 等. 超快冷终冷温度对含Nb-V-Ti微合金钢组织转变及析出行为的影响 [J]. 金属学报, 2015, 51(7): 784
3 Zhou Y X, Song X T, Liang J W, et al. Innovative processing of obtaining nanostructured bainite with high strength-high ductility combination in low carbon-medium-Mn steel: process-structure-property relationship [J]. Mater. Sci. Eng. A, 2018, 718: 267
doi: 10.1016/j.msea.2018.01.120
4 Dong H, Cao W Q, Shi J, et al. Microstructure and performance control technology of the 3rd generation auto sheet steels [J]. Iron & Steel, 2011, 46(06): 1
董 瀚, 曹文全, 时 捷 等. 第3代汽车钢的组织与性能调控技术 [J]. 钢铁, 2011, 46(06): 1
5 Li D Z, Zhuang Z H, Shen L Y, et al. Research status and development trend of microstructure control of advanced high strength steel [J]. Heat Treat. Met., 2019, 44(05): 12
李大赵, 庄治华, 申丽媛 等. 先进高强钢微观组织调控研究现状及发展趋势 [J]. 金属热处理, 2019, 44(05): 12
6 Vargas V H, Mejía I, Baltazar-Hernández V H, et al. Characterization of resistance spot welded transformation induced plasticity (TRIP) steels with different silicon and carbon contents [J]. Mater. Manuf. Process., 2018, 32: 307
7 Krishana S C, Karthick N K, Jha A K, et al. Effect of hot rolling on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel [J]. J. Mater. Eeg. Perform., 2018, 27(5): 2388
8 Chang Y, Wang C Y, Zhao K M, et al. An introduction to medium-Mn steel: Metallurgy, mechanical properties and warm stamping process [J]. Mater. Des., 2016, 94: 424
doi: 10.1016/j.matdes.2016.01.048
9 Wang C Y, Chang Y, Zhou F L, et al. M3 microstructure control theory and technology of the third-generation automotive steels with high strength and high ductility [J]. Acta Metall. Sin., 2020, 56(04): 400
王存宇, 常 颖, 周峰峦 等. 高强度高塑性第三代汽车钢的M3组织调控理论与技术 [J]. 金属学报, 2020, 56(04): 400
10 Wang J F, Wang Z G, Wang X D, et al. Strengthening effect of nanoscale precipitation and transformation induced plasticity in a hot rolled copper-containing ferrite-based lightweight steel [J]. Scr. Mater., 2017, 129: 25
doi: 10.1016/j.scriptamat.2016.10.025
11 Ma W G, Zhang Y J, Yang C F, et al. Effect of manganese content on microstructure and mechanical properties of manganese steel [J]. Dev. Appl. Mater., 2020, 35(03): 26
马伟刚, 张由景, 杨超飞 等. Mn含量对中锰钢微观组织及力学性能的影响 [J]. 材料开发与应用, 2020, 35(03): 26
12 Wei Y S. Performance and application of the 3rd generation high strength automobile steel [J]. Heat Treat. Met., 2015(12): 34
魏元生. 第三代高强度汽车钢的性能与应用 [J]. 金属热处理, 2015(12): 34
13 Wang C, Shi J, Wang C Y, et al. Development of ultrafine lamellar ferrite and austenite duplex structure in 0.2C5Mn steel during ART-annealing [J]. ISIJ Int., 2011, 51(4): 651
doi: 10.2355/isijinternational.51.651
14 Xu Y B, Hu Z P, Zou Y, et al. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite [J]. Mater. Sci. Eng. A, 2017, 688(14): 40
doi: 10.1016/j.msea.2017.01.063
15 Luo L B, Li W, Wang L, et al. Tensile behaviors and deformation mechanism of a medium Mn-TRIP steel at different temperatures [J]. Mater. Sci. Eng. A, 2017, 682(13): 698
doi: 10.1016/j.msea.2016.11.017
16 Lee S, Lee K, Cooman B C D. Observation of the TWIP+TRIP plasticity-enhancement mechanism in Al-added 6 wt pct medium Mn steel [J]. Metall. Mater. Trans. A, 2015, 46(6): 2356
17 Kwon K H, Yi I C, Ha Y, et al. Origin of intergranular fracture in martensitic 8Mn steel at cryogenic temperatures [J]. Scr. Mater., 2013, 69: 420
doi: 10.1016/j.scriptamat.2013.05.042
18 Heo N H, Nam J W, Heo Y U, et al. Grain boundary embrittlement by Mn and eutectoid reaction in binary Fe-12Mn steel [J]. Acta. Mater., 2013, 61: 4022
doi: 10.1016/j.actamat.2013.03.016
19 Xie Z J, Yuan S F, Zhou W H, et al. Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel [J]. Mater. Des., 2014, 59: 193
doi: 10.1016/j.matdes.2014.02.035
20 Zhou W H, Guo H, Xie Z J, et al. High strength low-carbon alloyed steel with good ductility by combining the retained austenite and nano-sized precipitates [J]. Mater. Sci. Eng. A, 2013, 587: 365
doi: 10.1016/j.msea.2013.06.022
21 Sugimoto Koh-ichi, Usui Noboru, Kobayashi Mitsuyuki, et al. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels [J]. ISIJ Int., 1992, 32(12): 1311
doi: 10.2355/isijinternational.32.1311
22 Sugimoto Koh-ichi, Iida Tsutomu, Sakaguchi Jyunya, et al. Austenite characteristics and tensile properties in a TRIP type bainitic sheet steel [J]. ISIJ Int., 2000, 40(9): 902
doi: 10.2355/isijinternational.40.902
23 Jiang Z H, Wang P, Li D Z, et al. Effects of tempering temperature on the microstructure and mechanical properties of granular bainite in 2.25Cr-1Mo-0.25V steel [J]. Acta Metall. Sin., 2015, 51(08): 925
蒋中华, 王 培, 李殿中 等. 回火温度对2.25Cr-1Mo-0.25V钢粒状贝氏体显微组织和力学性能的影响 [J]. 金属学报, 2015, 51(08): 925
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!