Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (12): 893-902    DOI: 10.11901/1005.3093.2020.434
ARTICLES Current Issue | Archive | Adv Search |
Degradation Models of Unidirectional Laminated Board in Consideration of Volume Fraction of Reinforced Fiber and Temperature
WU Yifan, WEN Weidong(), CUI Haitao, ZHANG Hongjian
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Cite this article: 

WU Yifan, WEN Weidong, CUI Haitao, ZHANG Hongjian. Degradation Models of Unidirectional Laminated Board in Consideration of Volume Fraction of Reinforced Fiber and Temperature. Chinese Journal of Materials Research, 2021, 35(12): 893-902.

Download:  HTML  PDF(1853KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The conventional fatigue damage factor was redefined by analyzing the relevant fatigue damage mechanisms in detail. Then, a model of residual-stiffness and -strength was individually proposed in consideration of the influence of reinforced fiber volume fraction and temperature on the properties of unidirectional fiber reinforced composites. Furthermore, by introducing temperature correction parameters into the above models of room temperature, a correlation model of residual strength with residual stiffness was further acquired, therewith the establish of residual strength model may be facilitated by reducing the dependance on the number of residual strength tests, and relieving the effect of data dispersion as well. Finally, the fatigue test data and residual strength test data of composite collected from the existing literatures were fitted and verified, it follows that the residual stiffness model and residual strength model can accurately describe the degradation behavior of residual stiffness and residual strength. The residual stiffness model can be also used to predict the degradation behavior of the residual stiffness of the composite with different fiber volume fraction at different temperature.

Key words:  composite      damage factor      residual stiffness      residual strength      temperature      fiber volume fraction     
Received:  19 October 2020     
ZTFLH:  V258+.3  
Fund: National Science and Technology Major Project of China(2017-IV-0007-0044)
About author:  WEN Weidong, Tel: 13601401667, E-mail: gswwd@nuaa.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.434     OR     https://www.cjmr.org/EN/Y2021/V35/I12/893

Fig.1  Damage propagation and stiffness degradation of composites
Stacking sequenceVf/%T/
[45/-45]2S2820
[45/-45]3S3520
[45/-45]4S4320
Table 1  Test conditions for T300/HCGP-1 composites
Fig.2  Schematic diagram of sample geometry (unit: mm)

Fitting

parameter

Fitting results

Fitting

parameter

Fitting results
k11.36k61.34
k2-0.76k71.47
k3-18.21k80.72
k412.22c10.71
k5-2.3c20.01
Table 2  Fitting results of residual stiffness model
Fig.3  Regularized residual stiffness curve and verification
Fitting parameterFitting results
w0.9042
Table 3  Fitting results of residual strength model
Fig.4  Regularized residual strength curve and verification
Fig.5  Experimental setup
Stacking sequenceVf/%Temperature/℃
[0]847.2020
[0]847.20160
[0]1251.89160
[0]1251.89200
[0]1664.3220
Table 4  Test conditions for T300/QY8911-IV unidirectional composites
Fig.6  Schematic diagram of sample geometry (unit: mm)

Fitting

parameter

Fitting

results

Fitting

parameter

Fitting results
k1-5.11k710.1
k22.56k8-10.11
k313c11.065
k4-10.88c21.318
k52.06k0.25
k6-0.1Tr-42.49
Table 5  Fitting results of residual stiffness model
Fig.7  Regularized residual stiffness curve and verification
Fig.8  Influence of temperature on stiffness degradation
Fig.9  Effect of fiber volume fraction on stiffness degradation
Fitting parameterFitting results
w1.75
t25.37×10-3
s25.11×10-4
Table 6  Fitting results of residual strength model
Fig.10  Regularized residual strength curve and verification
1 Shen J, Xie H Q. Development of research and application of the advanced composite materials in the aerospace engineering [J]. Mate. Sci. Technol., 2008, 16: 737
沈军, 谢怀勤. 先进复合材料在航空航天领域的研发与应用 [J]. 材料科学与工艺, 2008, 16: 737
2 Huston R J. Fatigue life prediction in composites [J]. Int. J. Press. Vessels Piping, 1994, 59: 131
3 Yang J N, Jones D L, Yang S H, et al. A stiffness degradation model for graphite/epoxy laminates [J]. J. Compos. Mater., 1990, 24: 753
4 Gu Y, Yao W X. Residual strength of fibre-reinforced-plastics under fatigue loading [J]. Acta Mater. Compos. Sin., 1999, 16(3): 98
顾怡, 姚卫星. 疲劳加载下纤维复合材料的剩余强度 [J]. 复合材料学报, 1999, 16(3): 98
5 Wang S P. Two stage fatigue damage theory of composite [D]. Beijing: Beijing University of Aeronautics and Astronautics, 2000
王三平. 复合材料疲劳损伤两阶段论 [D]. 北京: 北京航空航天大学, 2000
6 Jia B H, Li D H, Li W, et al. Research on stiffness reduction of composite laminates based on the two-stage theory of fatigue damage [J]. Fiber Reinf. Plast./Compos., 2010, (1): 16
贾宝惠, 李顶河, 李伟等. 基于疲劳损伤两段论的复合材料刚度降模型研究 [J]. 玻璃钢/复合材料, 2010, (1): 16
7 Cheng G X, Wei W, Li G Z. A general two stage model for accumulation of fatigue damage in composite materials [J]. Mater. Mech. Eng., 2000, 24(5): 1
程光旭, 韦玮, 李光哲. 复合材料疲劳损伤演化的两阶段模型 [J]. 机械工程材料, 2000, 24(5): 1
8 Wu F Q, Yao W X. Residual strength degradation model of fiber reinforced plastic [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2008, 40: 517
吴富强, 姚卫星. 纤维增强复合材料剩余强度衰减模型 [J]. 南京航空航天大学学报, 2008, 40: 517
9 Chen J W, Yao W X, Zong J D, et al. Probability model of residual stiffness of composite materials [J]. J. Nanjing Univ. Aeronaut. Astronaut., 2019, 51: 534
陈基伟, 姚卫星, 宗俊达等. 复合材料剩余刚度概率模型研究 [J]. 南京航空航天大学学报, 2019, 51: 534
10 Gao J X. Research on residual strength model and life prediction method of fiber reinforced polymer [D]. Lanzhou: Lanzhou University of Technology, 2019
高建雄. 纤维增强复合材料剩余强度模型及寿命预测方法研究 [D]. 兰州: 兰州理工大学, 2019
11 Tanimoto T, Amijima S. Progressive nature of fatigue damage of glass fiber reinforced plastics [J]. J. Compos. Mater., 1975, 9: 380
12 Tanimoto T, Amijima S, Ishikawa H. A reliability analysis approach to fatigue life dispersion of laminated glass fiber composite materials [J]. Mech. Behav. Mater., 1980, 3: 207
13 Abdulmajeed A A, Närhi T O, Vallittu P K, et al. The effect of high fiber fraction on some mechanical properties of unidirectional glass fiber-reinforced composite [J]. Dent. Mater., 2011, 27: 313
14 Allah M H A, Abdin E M, Selmy A I, et al. Effect of fibre volume fraction on the fatigue behaviour of GRP pultruded rod composites [J]. Compos. Sci. Technol., 1996, 56: 23
15 Mao H, Mahadevan S. Fatigue damage modelling of composite materials [J]. Compos. Struct., 2002, 58: 405
16 Qiu R. Research on fatigue life prediction and damage analysis of2.5D woven composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013
邱睿. 2.5维机织复合材料疲劳寿命预测模型与分析方法研究 [D]. 南京: 南京航空航天大学, 2013)
17 Song J. Mechanical behavior and fatigue prediction method of2.5D woven composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016
宋健. 2.5维机织复合材料力学行为及寿命预测模型研究 [D]. 南京: 南京航空航天大学, 2016)
18 Shokrieh M M, Lessard L B. Progressive fatigue damage modeling of composite materials, Part II: material characterization and model verification [J]. J. Compos. Mater., 2000, 34: 1081
19 Kim J S, Bae K D, Lee C, et al. Fatigue life evaluation of composite material sleeve using a residual stiffness model [J]. Int. J. Fatigue, 2017, 101: 86
20 Yan H. Research on the shear fatigue performance of FRP composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008
严红. 纤维增强树脂基复合材料剪切疲劳性能研究 [D]. 南京: 南京航空航天大学, 2008.
21 Reifsnider K L, Henneke E G, Stinchcom W W, et al. Damage mechanics and NDE of composite laminates [A].
Hashin Z, Herakovich C T. Mechanics of Composite Materials [M]. New York: Pergamon Press, 1983: 399
22 Mivehchi H, Varvani-Farahani A. The effect of temperature on fatigue damage of FRP composites [J]. J. Mater. Sci., 2010, 45: 3757
23 Liang S X, Gning P B, Guillaumat L. Properties evolution of flax/epoxy composites under fatigue loading [J]. Int. J. Fatigue, 2014, 63: 36
24 Wang D Y. Research on prediction of damage failure and fatigue life for composite bolted joints [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006
王丹勇. 层合板接头损伤失效与疲劳寿命研究 [D]. 南京: 南京航空航天大学, 2006
25 Wu W F, Lee L J, Choi S T. A study of fatigue damage and fatigue life of composite laminates [J]. J. Compos. Mater., 1996, 30: 123
26 Zong J D, Yao W X. Compound model of residual stiffness degradation for FRP composites [J]. Acta Mater. Compos. Sin., 2016, 33: 280
宗俊达, 姚卫星. FRP复合材料剩余刚度退化复合模型 [J]. 复合材料学报, 2016, 33: 280
27 Bai Y, Keller T, Vallée T. Modeling of stiffness of FRP composites under elevated and high temperatures [J]. Compos. Sci. Technol., 2008, 68: 3099
28 Di Ludovico M, Piscitelli F, Prota A, et al. Improved mechanical properties of CFRP laminates at elevated temperatures and freeze-thaw cycling [J]. Construct. Build. Mater., 2012, 31: 273
29 Li J F, Guo H J, Gao Y, et al. Curing process and high temperature mechanical properties of MT300/802 bismaleimide matrix composites [J]. Aerosp. Mater. Technol., 2019, 49(4): 34
李健芳, 郭鸿俊, 高扬等. MT300/802双马树脂基复合材料固化工艺及高温力学性能 [J]. 宇航材料工艺, 2019, 49(4): 34
30 Liu W Q, Fang H, Fang Y. Research progress of fiber-reinforced composites and structures [J]. J. Build. Struct., 2019, 40(4): 1
刘伟庆, 方海, 方园. 纤维增强复合材料及其结构研究进展 [J]. 建筑结构学报, 2019, 40(4): 1
31 Vieille B, Taleb L. About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: notched and unnotched laminates [J]. Compos. Sci. Technol., 2011, 71: 998
32 Song J, Wen W D. Study on mechanical properties of resin composites and models considering temperature environment [J]. J. Aerosp. Power, 2016, 31: 31
宋健, 温卫东. 考虑温度环境下树脂基复合材料力学性能及模型研究 [J]. 航空动力学报, 2016, 31: 31
33 Lee J H. An experimental and analytical investigation of the stiffness degradation of graphite/epoxy composite laminates under cyclic loading [D]. Washington:The George Washington University, 1989
34 Lian W, Yao W X. Residual stiffness-residual strength coupled model of composite laminates [J]. Acta Mater. Compos. Sin., 2008, 25(5): 151
廉伟, 姚卫星. 复合材料层压板剩余刚度-剩余强度关联模型 [J]. 复合材料学报, 2008, 25(5): 151
35 Qiu R, Wen W D, Cui H T. Material degradation models of unidirectional laminas considering fiber volume fraction [J]. J. Mater. Sci. Eng., 2013, 31: 728
邱睿, 温卫东, 崔海涛. 考虑纤维体积含量的单向层合板材料退化模型 [J]. 材料科学与工程学报, 2013, 31: 728
36 Lee C H, Jen M H R. Fatigue response and modelling of variable stress amplitude and frequency in AS-4/PEEK composite laminates, Part 2: analysis and formulation [J]. J. Compos. Mater., 2000, 34: 930
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] CHEN Jingjing, ZHAN Huimin, WU Hao, ZHU Qiaolin, ZHOU Dan, LI Ke. Tensile Mechanical Performance of High Entropy Nanocrystalline CoNiCrFeMn Alloy[J]. 材料研究学报, 2023, 37(8): 614-624.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[6] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[9] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[11] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[12] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[13] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[14] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
No Suggested Reading articles found!