Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (10): 778-784    DOI: 10.11901/1005.3093.2020.287
ARTICLES Current Issue | Archive | Adv Search |
Influence of FLiNaK Salt Impregnation on Mechanical Properties of 2D Woven C/C Composite
BAI Longteng1,2(), CHENG Laifei2, YANG Xiaohui1,2
1.Northwestern Polytechnical University, Xi'an 710072, China
2.Xi'an Aerospace Propulsion Institute, Xi'an 710010, China
Cite this article: 

BAI Longteng, CHENG Laifei, YANG Xiaohui. Influence of FLiNaK Salt Impregnation on Mechanical Properties of 2D Woven C/C Composite. Chinese Journal of Materials Research, 2021, 35(10): 778-784.

Download:  HTML  PDF(3749KB)  Mobile PDF(9755KB)
Export:  BibTeX | EndNote (RIS)      
Abstract  

Impregnating molten LiF-NaF-KF salt (46.5%-11.5%-42.0%,mole fraction, FLiNaK) into a 2D woven C/C composite was performed at 650℃ under different pressure. The mass gain, the change of density and mechanical properties of the 2D woven C/C composite after FLiNaK salt impregnation were measured. The FLiNaK salt distribution in the 2D woven C/C composite was observed by X-ray CT and SEM. The results show that the mass gain of the 2D woven C/C composite increased with the increasing impregnation pressure. FLiNaK salt distributed within open pores of the composite and fissures of fiber bundles and interlaminar fractures. The compressive strength and flexural strength of the 2D woven C/C composite increased with the increasing impregnation pressure. The coupling effect of densification induced by FLiNaK salt impregnation and residual stress formed in 2D woven C/C composite could be benefitial to the mechanical property of the C/C composite.

Key words:  composite      mechanical property      molten salt      impregnation      X-ray CT     
Received:  14 July 2020     
ZTFLH:  TB332  
Fund: National Natural Science Foundation of China(51632007)
About author:  BAI Longteng, Tel: 15902965891, E-mail: blt9520@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.287     OR     https://www.cjmr.org/EN/Y2021/V35/I10/778

Fig.1  Pore size distribution curve of the 2D woven C/C composite
Fig.2  Mass of the 2D woven C/C composite with pressure (a), mercury intrusion with pressure (b) and density with pressure (c)
γ/N·m-1θ/(°)Pressure/MPaDiameter/μm
0.201350.22.83
0.41.41
0.60.94
Table 1  Correlation between impregnation pressure and the corresponding pore size
Fig.3  Change of compressive strength (a, b) and flexural strength (c, d) before and after FLiNaK salt impregnation
Fig.4  Orthogonal slice and 3D reconstruction image of original the 2D woven C/C composite before impregnation (a, b); after impregnation in 0.2 MPa FLiNaK salt impregnation (c, d), in 0.4 MPa FLiNaK salt (e, f) and in 0.6 MPa FLiNaK salt (g, h)
Fig.5  SEM images of the fracture surface of the 2D woven C/C composite before impregnation (a) and after impregnation at 0.2 MPa (b), 0.4 MPa (c) and 0.6 MPa (d)
1 Hayner G O. NGNP Conceptual design study: composites R&D technical issues [R]. INL/EXT-09-16542, 2008
2 Eto M, Konishi T, Shibata T, et al. Research and developments on application of carbon-carbon composite to HTGR/VHTR in Japan [J]. IOP Conf. Ser., 2011, 18: 162003
3 Tsai S C, Jen H Y, Kai J J, et al. Microstructural evolutions of three-dimensional carbon-carbon composite materials irradiated by carbon ions at elevated temperatures [J]. Prog. Nucl. Energy, 2012, 57: 32
4 Baccahlini G, Ball S, Burchell T D, et al. Survey of materials research and development needs to support early deployment [R]. INEEL/EXT-03-00141, 2003: 5
5 Cho M S, Lee Y W, Jeong K C, et al. HTGR fuel compact fabrication technology [R]. Oak Ridge National Laboratory, 2006
6 Burchell T D, Strizak J P. Technical plan: development of carbon-carbon composite matearials for high-temperature NP-MHTGR control rods [R]. ORNL/NPR-92/6, 1992
7 A technology roadmap for generation IV nuclear energy systems [R]. GIF-002-00, 2002: 33
8 Abram T, Ion S. Generation-IV nuclear power: A review of the state of the science [J]. Energy Policy, 2008, 36: 4323
9 Song J L, Zhao Y L, Zhang J P, et al. Preparation of binderless nanopore-isotropic graphite for inhibiting the liquid fluoride salt and Xe135 penetration for molten salt nuclear reactor [J]. Carbon, 2014, 79: 36
10 He Z T, Gao L N, Qi W, et al. Molten FLiNaK salt infiltration into degassed nuclear graphite under inert gas pressure [J]. Carbon, 2015, 84: 511
11 Briggs R B. Molten-salt reactor program: semiannual Progress Report for Period Ending July 31, 1964 [R]. Oak Ridge, Tennessee, 1964
12 Sundaresan S. CFD modeling of compact offset strip-fin high temperature heat exchanger [D]. Reno: University of Nevada, 2005
13 Nam H O, Bengtson A, Vörtler K, et al. First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute [J]. J. Nucl. Mater., 2014, 449: 148
14 Olson L C. Materials corrosion in molten LiF-NaF-KF eutectic salt [D]. Madison: University of Wisconsin-Madison, 2009
15 Camus G, Guillaumat L, Baste S. Development of damage in a 2D woven C/SiC composite under mechanical loading: I. Mechanical characterization [J]. Compos. Sci. Technol., 1996, 56: 1363
16 Bobet J L, Lamon J. Study of thermal residual stresses in ceramic matrix composites [J]. J. Alloy Compd., 1997, 259: 260
17 Dassios K G, Aggelis D G, Kordatos E Z, et al. Cyclic loading of a SiC-fiber reinforced ceramic matrix composite reveals damage mechanisms and thermal residual stress state [J]. Composites, 2013, 44A: 105
18 Hui M. Measurement and calculation of thermal residual stress in fiber reinforced ceramic matrix composites [J]. Compos. Sci. Technol., 2008, 48: 3285
[1] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[2] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!