Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (10): 784-792    DOI: 10.11901/1005.3093.2020.072
ARTICLES Current Issue | Archive | Adv Search |
Fabrication and Photoluminescence Properties of MgAl2O4: Mg Phosphors
LIU Xinyi1, WANG Shifa1,2,3(), YU Xianlun1, TANG Shengnan1, FANG Leiming3, LEI Li4
1. School of Electronic and Information Engineering, Chongqing Three Gorges University, Wanzhou 404000, China
2. Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges;Reservoir Area, Chongqing Three Gorges University, Wanzhou 404000, China
3. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
4. Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Cite this article: 

LIU Xinyi, WANG Shifa, YU Xianlun, TANG Shengnan, FANG Leiming, LEI Li. Fabrication and Photoluminescence Properties of MgAl2O4: Mg Phosphors. Chinese Journal of Materials Research, 2020, 34(10): 784-792.

Download:  HTML  PDF(4131KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel MgAl2O4:Mg phosphor was prepared by ultrasonic assisted polyacrylamide gel method. When Mg metal particles were introduced into the MgAl2O4 system, the formation of MgAl2O4 phase was inhibited. When the xerogel powder MgAl2O4:Mg was sintered at 900℃ or above, the incorporated Mg-particles are oxidized to be MgO. The introduction of Mg-particles greatly changed the morphology of MgAl2O4:Mg phosphors, namely from tiny nanoparticles to instant noodles-like. The results show that the sintering temperature has great influence on the color, light absorption capacity, energy band Eg and photoluminescence properties of MgAl2O4:Mg phosphors. The color of MgAl2O4:Mg phosphors changes from dark brown for sintering at 600℃ to bright white at 800℃ and then to light white at 1000℃. With the increase of sintering temperature the Eg value of MgAl2O4:Mg phosphors increased first and then decreased slightly. The photoluminescence spectra show that three new photoluminescence emission peaks located at 650, 656 and 680 nm are observed when the excitation wavelength is 325 nm. The photoluminescence intensity decreased with the increasing of sintering temperature. The fluorescence emission peaks at 395 and 425 nm of host lattice MgAl2O4 were quenched. The surface plasmon resonance (SPR) of Mg metal particles led to the fluorescence quenching of MgAl2O4 host lattice, and the defect energy level can produce a new fluorescence emission band at 635~690 nm of MgAl2O4:Mg phosphors.

Key words:  composite      MgAl2O4      polyacrylamide gel method      fluorescence      surface plasmon resonance     
Received:  09 March 2020     
ZTFLH:  TB321  
Fund: Natural Science Foundation of Chongqing(cstc2019jcyj-msxmX0310);Science and Technol-ogy Research Program of Chongqing Education Commission(KJQN201901);Science and Technol-ogy Research Program of Chongqing Education Commission(KJZD-M201901201);Talent Introduction Project(09924601);Major Cultivation Projects of Chongqing Three Gorges University(18ZDPY01)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.072     OR     https://www.cjmr.org/EN/Y2020/V34/I10/784

Fig.1  Chemical route for the preparation of MgAl2O4:Mg phosphors.
Fig.2  XRD patterns of MgAl2O4:Mg xerogel powders calcined at different temperatures
Fig.3  FTIR spectra of MgAl2O4:Mg xerogel powders calcined at different temperatures
Fig.4  SEM images of MgAl2O4:Mg xerogel powders calcined at 800°C (a) overall view; (b) front view; (c) lateral view
Fig.5  UV-Vis diffuse reflectance spectra (a), UV-Vis absorption spectra (b) of MgAl2O4:Mg xerogel powders calcined at different temperatures
SampleColor coordinatesEg /eV
L*a*b*c*HoECIE*
60055.8785.22613.08014.08568.22157.6262.090
70070.8920.34510.24910.29688.07271.6363.643
80098.318-0.4974.3074.336-83.41898.4143.803
90098.049-0.5313.0553.101-80.14098.0984.027
100097.652-0.1612.3912.396-86.14897.6813.970
Table 1  Color coordinates and Eg values of MgAl2O4:Mg xerogel powders calcined at different temperatures
Fig.6  Real photos of MgAl2O4:Mg xerogel powders calcined at different temperatures (1) 600℃; (2) 700℃; (3) 800℃; (4) 900℃; (5) 1000℃
Fig.7  Egvalues of MgAl2O4:Mg xerogel powders calcined at different temperatures (a) 600℃; (b) 700℃; (c) 800℃; (d) 900℃; (e) 1000℃; (f) relationship between Eg value and sintering temperature
Fig.8  Fluorescence spectra of MgAl2O4:Mg xerogel powders calcined at 800℃
Fig.9  CIE diagram of MgAl2O4:Mg xerogel powders calcined at 800℃
Fig.10  Relationship between luminescence intensity at 650 nm and sintering temperature
Fig.11  Photoluminescence mechanism of MgAl2O4:Mg phosphors
[1] Han M, Wang Z S, Xu Y, et al. Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method [J]. Mater. Chem. Phys., 2018, 215: 251
doi: 10.1016/j.matchemphys.2018.05.029
[2] Laobuthee A, Wongkasemjit S, Traversa E, et al. MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors [J]. J. Eur. Ceram. Soc., 2000, 20: 91
doi: 10.1016/S0955-2219(99)00153-3
[3] Tsai D S, Wang C T, Yang S J, et al. Hot isostatic pressing of MgAl2O4 spinel infrared windows [J]. Mater. Manuf. Process., 1994, 9: 709
doi: 10.1080/10426919408934941
[4] Fu P, Lu W Z, Lei W, et al. Transparent polycrystalline MgAl2O4 ceramic fabricated by spark plasma sintering: Microwave dielectric and optical properties [J]. Ceram. Int., 2013, 39: 2481
doi: 10.1016/j.ceramint.2012.09.006
[5] Wang S F, Chen C L, Li Y W, et al. Synergistic effects of optical and photoluminescence properties, charge transfer, and photocatalytic activity in MgAl2O4: Ce and Mn-Codoped MgAl2O4: Ce phosphors [J]. J. Electron. Mater., 2019, 48: 6675
doi: 10.1007/s11664-019-07479-x
[6] Qi J Q, Lv T C, Chang X H, et al. Investigation on preparation and transparent mechanism of MgAl2O4 transparent nano-ceramics [J]. Chin. J. Mater. Res., 2006, 20: 367
齐建起, 卢铁城, 常相辉等. MgAl2O4纳米透明陶瓷的制备及其透明机理 [J]. 材料研究学报, 2006, 20: 367
[7] He J, Lin L B, Lu Y, et al. Study on optical spectra of transparent MgAl2O4 ceramics treated with γ-irradiation and annealing [J]. J. Synthet. Cryst., 2004, 31: 63
何捷, 林理彬, 卢勇等. γ辐射及退火MgAl2O4透明陶瓷光谱特性研究 [J]. 人工晶体学报, 2004, 31: 63
[8] Wang S F, Gao H J, Wei Y, et al. Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N-O and C-O functional groups decorating spinel type magnesium aluminate [J]. CrystEngComm, 2019, 21: 263
doi: 10.1039/C8CE01474D
[9] Moshtaghioun B M, Peña J I, Merino R I. Medium infrared transparency of MgO-MgAl2O4 directionally solidified eutectics [J]. J. Eur. Ceram. Soc., 2020, 40: 1703
doi: 10.1016/j.jeurceramsoc.2019.10.053
[10] Choudhary A K, Dwivedi A, Bahadur A, et al. Enhanced upconversion emission and temperature sensor sensitivity in presence of Bi3+ ions in Er3+/Yb3+ co-doped MgAl2O4 phosphor [J]. Ceram. Int., 2018, 44: 9633
doi: 10.1016/j.ceramint.2018.02.190
[11] Kumari P, Dwivedi Y. Optical analysis of interaction between Sm and Eu ions in MgAl2O4 spinel nanophosphor [J]. Optik, 2020, 203: 163977
doi: 10.1016/j.ijleo.2019.163977
[12] Ibarra A, Bravo D, Garcia M A, et al. Dose dependence of neutron irradiation effects on MgAl2O4 spinels [J]. J. Nucl. Mater., 1998, 258-263: 1902
doi: 10.1016/S0022-3115(98)00130-5
[13] Ibarra A, Vila R, Garner F A. Optical and dielectric properties of neutron irradiated MgAl2O4 spinels [J]. J. Nucl. Mater., 1996, 233-237: 1336
doi: 10.1016/S0022-3115(96)00158-4
[14] Yang Z X, Zhong W, Au C T, et al. Novel photoluminescence properties of magnetic Fe/ZnO composites: self-assembled ZnO nanospikes on Fe nanoparticles fabricated by hydrothermal method [J]. J. Phys. Chem., 2009, 113C: 21269
[15] Im J, Singh J, Soares J W, et al. Synthesis and optical properties of dithiol-linked ZnO/gold nanoparticle composites [J]. J. Phys. Chem., 2011, 115C: 10518
[16] Huan H, Jile H, Tang Y J, et al. Fabrication of ZnO@Ag@Ag3PO4 ternary heterojunction: superhydrophilic properties, antireflection and photocatalytic properties [J]. Micromachines, 2020, 11: 309
doi: 10.3390/mi11030309
[17] Wang Y P, Yang H, Sun X F, et al. Preparation and photocatalytic application of ternary n-BaTiO3/Ag/p-AgBr heterostructured photocatalysts for dye degradation [J]. Mater. Res. Bull., 2020, 124: 110754
doi: 10.1016/j.materresbull.2019.110754
[18] Rahmat N, Yaakob Z, Pudukudy M, et al. Single step solid-state fusion for MgAl2O4 spinel synthesis and its influence on the structural and textural properties [J]. Powder Technol., 2018, 329: 409
doi: 10.1016/j.powtec.2018.02.007
[19] Ay A N, Zümreoglu-Karan B, Temel A, et al. Bioinorganic magnetic core-shell nanocomposites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite [J]. Inorg. Chem., 2009, 48: 8871
doi: 10.1021/ic901097a pmid: 19691269
[20] Wang S Y, Yang H, Yi Z, et al. Enhanced photocatalytic performance by hybridization of Bi2WO6 nanoparticles with honeycomb-like porous carbon skeleton [J]. J. Environ. Manag., 2019, 248: 109341
doi: 10.1016/j.jenvman.2019.109341
[21] Garza-Navarro M A, Torres-Castro A, García-Gutiérrez D I, et al. Synthesis of spinel-metal-oxide/biopolymer hybrid nanostructured materials [J]. J. Phys. Chem., 2010, 114C: 17574
[22] Huang J G, Zhuang H R, Li W L. Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion [J]. Mater. Res. Bull., 2003, 38: 149
doi: 10.1016/S0025-5408(02)00979-0
[23] Pathak N, Sanyal B, Gupta S K, et al. MgAl2O4 both as short and long persistent phosphor material: Role of antisite defect centers in determining the decay kinetics [J]. Solid State Sci., 2019, 88: 13
doi: 10.1016/j.solidstatesciences.2018.12.001
[24] Puriwat J, Chaitree W, Suriye K, et al. Elucidation of the basicity dependence of 1-butene isomerization on MgO/Mg(OH)2 catalysts [J]. Catal. Commun., 2010, 12: 80
doi: 10.1016/j.catcom.2010.08.015
[25] Kutty P M, Dasgupta S. Low temperature synthesis of nanocrystalline magnesium aluminate spinel by a soft chemical method [J]. Ceram. Int., 2013, 39: 7891
doi: 10.1016/j.ceramint.2013.03.050
[26] Nantharak W, Wattanathana W, Klysubun W, et al. Effect of local structure of Sm3+ in MgAl2O4: Sm3+ phosphors prepared by thermal decomposition of triethanolamine complexes on their luminescence property [J]. J. Alloys Compd., 2017, 701: 1019
doi: 10.1016/j.jallcom.2017.01.090
[27] Peng S M, He J L, Hu J, et al. Influence of functionalized MgO nanoparticles on electrical properties of polyethylene nanocomposites [J]. IEEE Trans. Dielect. Electr. Insulat., 2015, 22: 1512
doi: 10.1109/TDEI.2015.7116346
[28] Li L X, Xu D, Li X Q, et al. Excellent fluoride removal properties of porous hollow MgO microspheres [J]. New J. Chem., 2014, 38: 5445
doi: 10.1039/C4NJ01361A
[29] Li Z H, Yu Q J, Chen X W, et al. The role of MgO in the thermal behavior of MgO-silica fume pastes [J]. J. Therm. Anal. Calorim., 2017, 127: 1897
doi: 10.1007/s10973-016-5827-6
[30] Llamas R, Jiménez-Sanchidrián C, Ruiz J R. Environmentally friendly Baeyer-Villiger oxidation with H2O2/nitrile over Mg(OH)2 and MgO [J]. Appl. Catal., 2007, 72B: 18
[31] Yang H, Cao Z E, Shen X, et al. Fabrication of 0-3 type manganite/insulator composites and manipulation of their magnetotransport properties [J]. J. Appl. Phys., 2009, 106: 104317
doi: 10.1063/1.3262624
[32] Yang H, Cao Z E, Shen X, et al. A polymer-network gel route to oxide composite nanoparticles with core/shell structure [J]. Mater. Lett., 2009, 63: 655
doi: 10.1016/j.matlet.2008.12.013
[33] Yang X H. Irradiation synthesized and photoluminescence mechanism of MgAl2O4: Ce phosphor [J]. Inorgan. Chem. Ind., 2019, 51(9): 30
杨晓红. MgAl2O4: Ce荧光粉辐照合成及发光机理研究 [J]. 无机盐工业, 2019, 51(9): 30
[34] Gao H J, Yang H, Wang S F. Comparative study on optical and electrochemical properties of MFe2O4 (M=Mg, Ca, Ba) nanoparticles [J]. Trans. Indian Ceram. Soc., 2018, 77: 150
doi: 10.1080/0371750X.2018.1512381
[35] Ewais E M M, El-Amir A A M, Besisa D H A, et al. Synthesis of nanocrystalline MgO/MgAl2O4 spinel powders from industrial wastes [J]. J. Alloys Compd., 2017, 691: 822
doi: 10.1016/j.jallcom.2016.08.279
[36] Nassar M Y, Ahmed I S, Samir I. A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol-gel auto combustion method and their photocatalytic properties [J]. Spectrochim. Acta, 2014, 131A: 329
[37] Chen Z S, Liang X P, Fan X W, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33: 515
陈子尚, 梁小平, 樊小伟等. Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33: 515
[38] Kato T, Okada G, Optical Yanagida T., scintillation and dosimeter properties of MgO transparent ceramic and single crystal [J]. Ceram. Int., 2016, 42: 5617
doi: 10.1016/j.ceramint.2015.12.070
[39] Panin G N, Baranov A N, Oh Y J, et al. Luminescence from ZnO/MgO nanoparticle structures prepared by solution techniques [J]. Curr. Appl. Phys., 2004, 4: 647
doi: 10.1016/j.cap.2004.01.041
[40] Cui H M, Wu X F, Chen Y F, et al. Influence of copper doping on chlorine adsorption and antibacterial behavior of MgO prepared by co-precipitation method [J]. Mater. Res. Bull., 2015, 61: 511
doi: 10.1016/j.materresbull.2014.10.067
[41] Wang X, He Y, Peng G H, et al. Synthesis and luminescence properties of hollow spherical CaMoO4: Eu3+, Li+ red phosphors [J]. Chin. J. Mater. Res., 2012, 26: 615
王夏, 何燕, 彭桂花等. CaMoO4: Eu3+, Li+红色荧光粉空心球的制备和发光性能 [J]. 材料研究学报, 2012, 26: 615
[42] Li Z, Wu K Y, Wang Y F, et al. Hydrothermal preparation and photoluminescent property of SrMoO4: Pr3+ red phosphors [J]. Chin. J. Mater. Res., 2017, 31: 274
李兆, 吴坤尧, 王永锋等. SrMoO4: Pr3+红色荧光粉的水热合成及光致发光 [J]. 材料研究学报, 2017, 31: 274
[43] Yan Y X, Yang H, Yi Z, et al. Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation [J]. Solid State Sci., 2020, 100: 106102
doi: 10.1016/j.solidstatesciences.2019.106102
[44] Wu H, Jile H, Chen Z Q, et al. Fabrication of ZnO@MoS2 nanocomposite heterojunction arrays and their photoelectric properties [J]. Micromachines, 2020, 11: 189
doi: 10.3390/mi11020189
[45] Guan S T, Yang H, Sun X F, et al. Preparation and promising application of novel LaFeO3/BiOBr heterojunction photocatalysts for photocatalytic and photo-Fenton removal of dyes [J]. Opt. Mater., 2020, 100: 109644
doi: 10.1016/j.optmat.2019.109644
[46] Yi Z, Li X, Wu H, et al. Fabrication of ZnO@Ag3PO4 core-shell nanocomposite arrays as photoanodes and their photoelectric properties [J]. Nanomaterials, 2019, 9: 1254
doi: 10.3390/nano9091254
[47] Peralta M D L R, Pal U, Zeferino R S. Photoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis [J]. ACS Appl. Mater. Int., 2012, 4: 4807
doi: 10.1021/am301155u
[48] Xian T, Di L J, Ma J, et al. Photocatalytic degradation activity of BaTiO3 nanoparticles modified with Au in simulated sunlight [J]. Chin. J. Mater. Res., 2017, 31: 102
县涛, 邸丽景, 马俊等. Au改性BaTiO3纳米颗粒在模拟太阳光照射下的光催化降解性能 [J]. 材料研究学报, 2017, 31: 102
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!