Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (7): 554-560    DOI: 10.11901/1005.3093.2020.028
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Properties of Ti-(43-48)Al-2Cr-2Nb Alloy Prepared by Directional Solidification
GUO Junjie1, WANG Guotian2(), MENG Fanying1
1.Zhangjiakou Vocational and Technical College, Zhangjiakou 075000, China
2.Heilongjiang Institute of Technology, Harbin 150050, China
Cite this article: 

GUO Junjie, WANG Guotian, MENG Fanying. Microstructure and Properties of Ti-(43-48)Al-2Cr-2Nb Alloy Prepared by Directional Solidification. Chinese Journal of Materials Research, 2020, 34(7): 554-560.

Download:  HTML  PDF(8284KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Al content on the microstructure and mechanical properties of directionally solidified Ti-(43-48)Al-2Cr-2Nb alloy prepared by cold crucible was investigated. The results show that the directional solidification structure is mainly composed of α2-phase and γ-phase. With the increase of Al content, the α2-phase decreases and the γ-phase content increases, while the direction of microstructural lamellae changed from parallel lamellae and 45° lamellae to vertical lamellae; For the alloy with 48%Al (atomic fraction), the orientation of lamellae is perpendicular to the direction of stress, its compressive strength is high, but plasticity is low; For the alloy with 45%Al (atomic fraction), the orientation of lamellae is parallel to the direction of stress, while maintaining high strength, the room temperature elongation is also high, in other word, the comprehensive properties are good.

Key words:  metallic materials      TiAl alloy      directional solidification      microstructure      lamellar direction      mechanical property     
Received:  18 January 2020     
ZTFLH:  TG244.3  
Fund: National Natural Science Foundation of China(51471062);Doctor Foundation Project of Heilongjiang Institute of Technology(2019BJ03)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.028     OR     https://www.cjmr.org/EN/Y2020/V34/I7/554

Fig.1  Phase diagram of AMPD-SCN equilibrium transformation[22]
Fig.2  Binary phase diagram of TiAl alloy at high temperature
Fig.3  XRD pattern of DS Ti-(43-48)Al-2Cr-2Nb alloy
Fig.4  Macro-profile of directional solidification region of CCDS Ti-(43-48)Al-2Cr-2Nb ingots with draw-ing rate of 0.6 mm/min (a) Ti-43Al-2Cr-2Nb; (b) Ti-45Al-2Cr-2Nb; (c) Ti-48Al-2Cr-2Nb
Fig.5  Lognitudinal macrostructures of directionally solidified Ti-45Al-2Cr-2Nb alloys under drawing rate of 0.6 mm/min (a) Ti-43Al-2Cr-2Nb; (b) Ti-45Al-2Cr-2Nb; (c) Ti-48Al-2Cr-2Nb
Fig.6  Interface response function of directional solidification of Ti-48Al-2Cr-2Nb alloy
Fig.7  Effect of different Al content on the orientation of lamellae of alloy with drawing rate of 0.6 mm/min
Fig.8  Back-scattered images of DS TiAl alloys (a) Ti-43Al-2Cr-2Nb; (b) Ti-45Al-2Cr-2Nb; (c) Ti-48Al-2Cr-2Nb
Fig.9  The schematic diagram of compression samples from DS Ti-(43-48)Al-2Cr-2Nb ingots:(a) 45°-0°-45° samples; (b) 0°-45°-90° samples
Fig.10  Stress-strain curves corresponding to the compression tests of Ti-(43-48)Al-2Cr-2Nb alloy with different Al contents
Samples

Growth rate

/mm·min-1

Yield strength

σ0.2/MPa

Ultimate compressed

strength/MPa

Deformation

ε/%

1-430.6768214523.63
2-450.6709207231.48
3-480.6528182129.04
Table 1  Compression properties of DS Ti-(43-48)Al-2Cr-2Nb alloy at drawing rate of 0.6 mm/min
Fig.11  Effect of Al content in Ti-(43-48)Al-2Cr-2Nb alloy on the compressive properties
Fig.12  Fracture surface of DS Ti-45Al-2Cr-2Nb alloy at drawing rate of 0.6 mm/min
[1] Wang Q, Zeng L C, Ding H S, et al. Microstructures and mechanical properties of directionally solidified C-containing γ-TiAl alloys via electromagnetic cold crucible [J]. Intermetallics, 2019, 113: 106587.
[2] Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titaniumaluminides [J]. Prog. Mater. Sci., 2016, 81: 55
doi: 10.1016/j.pmatsci.2016.01.001
[3] Wang X Y, Yang J R, Song L, et al. Evolution of B2 (ω) region in high-Nb containing TiAl alloy in intermediate temperature range [J]. Intermetallics, 2017, 82: 32
doi: 10.1016/j.intermet.2016.11.007
[4] Wen D S, Zong Y Y, Xu W C, et al. The effect of hydrogen on phase transformation and mechanical properties of a β containing γ-TiAl based alloy [J]. Int. J. Hydrog. Energy, 2014, 39: 17404
doi: 10.1016/j.ijhydene.2014.08.051
[5] Erdely P, Werner R, Schwaighofer E, et al. In-situ study of the time-temperature-transformation behaviour of a multi-phase intermetallic β-stabilised TiAl alloy [J]. Intermetallics, 2015, 57: 17
doi: 10.1016/j.intermet.2014.09.011
[6] Zhang Y G, Han Y F, Chen G L, et al. Structural Intermetallics [M] . Beijing: National Defense Industry Press, 2000: 705
(张永刚, 韩雅芳, 陈国良等. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2000: 705)
[7] Rester M, Fischer FD, Kirchlechner C, et al. Deformation mechanisms in micron-sized PST TiAl compression samples: experiment and model [J]. Acta Mater., 2011, 59: 3410
doi: 10.1016/j.actamat.2011.02.016
[8] Appel F, Wagner R. Microstructure and deformation of two-phase γ-titanium aluminides [J]. Mater. Sci. Eng., 1998, 22R: 187
[9] Liu Q, Nash P. The effect of Ruthenium addition on the microstructure and mechanical properties of TiAl alloys [J]. Intermetallics, 2011, 19: 1282
doi: 10.1016/j.intermet.2011.04.005
[10] Xu W C, Shan D B, Zhang H, et al. Effects of extrusion deformation on microstructure, mechanical properties and hot workability of β containing TiAl alloy [J]. Mater. Sci. Eng., 2013, 571A: 199
[11] Guo F A, Ji V, Francois M, et al. Effect of internal stresses on the fracture toughness of a TiAl-based alloy with duplex microstructures [J]. Acta Mater., 2003, 51: 5349
doi: 10.1016/S1359-6454(03)00392-6
[12] Nam C Y, Wee D M, Wang P, et al. Microstructure and toughness of nitrogen-doped TiAl alloys [J]. Intermetallics, 2002, 10: 113
doi: 10.1016/S0966-9795(01)00116-9
[13] Lapin J, Gabalcová Z, Solidification behaviour of TiAl-based alloys studied by directional solidification technique [J]. Intermetallics, 2011, 19: 797
doi: 10.1016/j.intermet.2010.11.021
[14] Kartavykh A V, Tcherdyntsev V V, Gorshenkov M V, et al. Tailored microstructure creation of TiAl-based refractory alloys within VGF solidification [J]. Mater. Chem. Phys., 2013, 141: 643
doi: 10.1016/j.matchemphys.2013.05.037
[15] Kartavykh A V, Tcherdyntsev V V, Gorshenkov M V, et al. Microstructure engineering of TiAl-based refractory intermetallics within power-down directional solidification process [J]. J. Alloys Compd., 2014, 586(Suppl.1): S180
doi: 10.1016/j.jallcom.2012.10.175
[16] Ding H S, Nie G, Chen R R, et al. Directional solidification of TiAl-W-Si alloy by electromagnetic confinement of melt in cold crucible [J]. Intermetallics, 2012, 31: 264
doi: 10.1016/j.intermet.2012.07.018
[17] Duan Q Q, Luan Q D, Liu J, et al. Microstructure and mechanical properties of directionally solidified high-Nb containing Ti-Al alloys [J]. Mater. Des., 2010, 31: 3499
doi: 10.1016/j.matdes.2010.02.022
[18] Kishida K, Johnson D R, Masuda Y, et al. Deformation and fracture of PST crystals and directionally solidified ingots of TiAl-based alloys [J]. Intermetallics, 1998, 6: 679
doi: 10.1016/S0966-9795(98)00055-7
[19] Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temperat., 2016, 33: 549
[20] Kartavykh A V, Asnis E A, Piskun N V, et al. Microstructure and mechanical properties control of γ-TiAl(Nb, Cr, Zr) intermetallic alloy by induction float zone processing [J]. J. Alloys Compd., 2015, 643(Suppl.1): S182
doi: 10.1016/j.jallcom.2014.12.210
[21] Ding H S, Wang Y Z, Chen R R, et al. Effect of growth rate on microstructure and tensile properties of Ti-45Al-2Cr-2Nb prepared by electromagnetic cold crucible directional solidification [J]. Mater. Des., 2015, 86: 670
doi: 10.1016/j.matdes.2015.07.122
[22] Inui H, Oh M H, Nakamura A, et al. Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl [J]. Acta Metall. Mater., 1992, 40: 3095
doi: 10.1016/0956-7151(92)90472-Q
[23] Liu C, Su Y Q, Li X Z, et al. Microstructure evolution of Ti-(44-50)Al alloys during directional peritectic solidification [J]. Acta Metall. Sin., 2005, 41: 260
(刘畅, 苏彦庆, 李新中等. Ti-(44-50)Al合金定向包晶凝固过程中的组织演化 [J]. 金属学报, 2005, 41: 260)
[24] Yokoshima S, Yamaguchi M. Fracture behavior and toughness of PST crystals of TiAl [J]. Acta Mater., 1996, 44: 873
doi: 10.1016/1359-6454(95)00255-3
[25] Parthasarathy T A, Mendiratta M G, Dimiduk D M. Flow behavior of PST and fully lamellar polycrystals of Ti-48Al in the microstrain regime [J]. Acta Metall., 1998, 46: 4005
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!