|
|
Microstructure and Properties of Ti-(43-48)Al-2Cr-2Nb Alloy Prepared by Directional Solidification |
GUO Junjie1, WANG Guotian2( ), MENG Fanying1 |
1.Zhangjiakou Vocational and Technical College, Zhangjiakou 075000, China 2.Heilongjiang Institute of Technology, Harbin 150050, China |
|
Cite this article:
GUO Junjie, WANG Guotian, MENG Fanying. Microstructure and Properties of Ti-(43-48)Al-2Cr-2Nb Alloy Prepared by Directional Solidification. Chinese Journal of Materials Research, 2020, 34(7): 554-560.
|
Abstract The effect of Al content on the microstructure and mechanical properties of directionally solidified Ti-(43-48)Al-2Cr-2Nb alloy prepared by cold crucible was investigated. The results show that the directional solidification structure is mainly composed of α2-phase and γ-phase. With the increase of Al content, the α2-phase decreases and the γ-phase content increases, while the direction of microstructural lamellae changed from parallel lamellae and 45° lamellae to vertical lamellae; For the alloy with 48%Al (atomic fraction), the orientation of lamellae is perpendicular to the direction of stress, its compressive strength is high, but plasticity is low; For the alloy with 45%Al (atomic fraction), the orientation of lamellae is parallel to the direction of stress, while maintaining high strength, the room temperature elongation is also high, in other word, the comprehensive properties are good.
|
Received: 18 January 2020
|
|
Fund: National Natural Science Foundation of China(51471062);Doctor Foundation Project of Heilongjiang Institute of Technology(2019BJ03) |
[1] |
Wang Q, Zeng L C, Ding H S, et al. Microstructures and mechanical properties of directionally solidified C-containing γ-TiAl alloys via electromagnetic cold crucible [J]. Intermetallics, 2019, 113: 106587.
|
[2] |
Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titaniumaluminides [J]. Prog. Mater. Sci., 2016, 81: 55
doi: 10.1016/j.pmatsci.2016.01.001
|
[3] |
Wang X Y, Yang J R, Song L, et al. Evolution of B2 (ω) region in high-Nb containing TiAl alloy in intermediate temperature range [J]. Intermetallics, 2017, 82: 32
doi: 10.1016/j.intermet.2016.11.007
|
[4] |
Wen D S, Zong Y Y, Xu W C, et al. The effect of hydrogen on phase transformation and mechanical properties of a β containing γ-TiAl based alloy [J]. Int. J. Hydrog. Energy, 2014, 39: 17404
doi: 10.1016/j.ijhydene.2014.08.051
|
[5] |
Erdely P, Werner R, Schwaighofer E, et al. In-situ study of the time-temperature-transformation behaviour of a multi-phase intermetallic β-stabilised TiAl alloy [J]. Intermetallics, 2015, 57: 17
doi: 10.1016/j.intermet.2014.09.011
|
[6] |
Zhang Y G, Han Y F, Chen G L, et al. Structural Intermetallics [M] . Beijing: National Defense Industry Press, 2000: 705
|
|
(张永刚, 韩雅芳, 陈国良等. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2000: 705)
|
[7] |
Rester M, Fischer FD, Kirchlechner C, et al. Deformation mechanisms in micron-sized PST TiAl compression samples: experiment and model [J]. Acta Mater., 2011, 59: 3410
doi: 10.1016/j.actamat.2011.02.016
|
[8] |
Appel F, Wagner R. Microstructure and deformation of two-phase γ-titanium aluminides [J]. Mater. Sci. Eng., 1998, 22R: 187
|
[9] |
Liu Q, Nash P. The effect of Ruthenium addition on the microstructure and mechanical properties of TiAl alloys [J]. Intermetallics, 2011, 19: 1282
doi: 10.1016/j.intermet.2011.04.005
|
[10] |
Xu W C, Shan D B, Zhang H, et al. Effects of extrusion deformation on microstructure, mechanical properties and hot workability of β containing TiAl alloy [J]. Mater. Sci. Eng., 2013, 571A: 199
|
[11] |
Guo F A, Ji V, Francois M, et al. Effect of internal stresses on the fracture toughness of a TiAl-based alloy with duplex microstructures [J]. Acta Mater., 2003, 51: 5349
doi: 10.1016/S1359-6454(03)00392-6
|
[12] |
Nam C Y, Wee D M, Wang P, et al. Microstructure and toughness of nitrogen-doped TiAl alloys [J]. Intermetallics, 2002, 10: 113
doi: 10.1016/S0966-9795(01)00116-9
|
[13] |
Lapin J, Gabalcová Z, Solidification behaviour of TiAl-based alloys studied by directional solidification technique [J]. Intermetallics, 2011, 19: 797
doi: 10.1016/j.intermet.2010.11.021
|
[14] |
Kartavykh A V, Tcherdyntsev V V, Gorshenkov M V, et al. Tailored microstructure creation of TiAl-based refractory alloys within VGF solidification [J]. Mater. Chem. Phys., 2013, 141: 643
doi: 10.1016/j.matchemphys.2013.05.037
|
[15] |
Kartavykh A V, Tcherdyntsev V V, Gorshenkov M V, et al. Microstructure engineering of TiAl-based refractory intermetallics within power-down directional solidification process [J]. J. Alloys Compd., 2014, 586(Suppl.1): S180
doi: 10.1016/j.jallcom.2012.10.175
|
[16] |
Ding H S, Nie G, Chen R R, et al. Directional solidification of TiAl-W-Si alloy by electromagnetic confinement of melt in cold crucible [J]. Intermetallics, 2012, 31: 264
doi: 10.1016/j.intermet.2012.07.018
|
[17] |
Duan Q Q, Luan Q D, Liu J, et al. Microstructure and mechanical properties of directionally solidified high-Nb containing Ti-Al alloys [J]. Mater. Des., 2010, 31: 3499
doi: 10.1016/j.matdes.2010.02.022
|
[18] |
Kishida K, Johnson D R, Masuda Y, et al. Deformation and fracture of PST crystals and directionally solidified ingots of TiAl-based alloys [J]. Intermetallics, 1998, 6: 679
doi: 10.1016/S0966-9795(98)00055-7
|
[19] |
Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temperat., 2016, 33: 549
|
[20] |
Kartavykh A V, Asnis E A, Piskun N V, et al. Microstructure and mechanical properties control of γ-TiAl(Nb, Cr, Zr) intermetallic alloy by induction float zone processing [J]. J. Alloys Compd., 2015, 643(Suppl.1): S182
doi: 10.1016/j.jallcom.2014.12.210
|
[21] |
Ding H S, Wang Y Z, Chen R R, et al. Effect of growth rate on microstructure and tensile properties of Ti-45Al-2Cr-2Nb prepared by electromagnetic cold crucible directional solidification [J]. Mater. Des., 2015, 86: 670
doi: 10.1016/j.matdes.2015.07.122
|
[22] |
Inui H, Oh M H, Nakamura A, et al. Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl [J]. Acta Metall. Mater., 1992, 40: 3095
doi: 10.1016/0956-7151(92)90472-Q
|
[23] |
Liu C, Su Y Q, Li X Z, et al. Microstructure evolution of Ti-(44-50)Al alloys during directional peritectic solidification [J]. Acta Metall. Sin., 2005, 41: 260
|
|
(刘畅, 苏彦庆, 李新中等. Ti-(44-50)Al合金定向包晶凝固过程中的组织演化 [J]. 金属学报, 2005, 41: 260)
|
[24] |
Yokoshima S, Yamaguchi M. Fracture behavior and toughness of PST crystals of TiAl [J]. Acta Mater., 1996, 44: 873
doi: 10.1016/1359-6454(95)00255-3
|
[25] |
Parthasarathy T A, Mendiratta M G, Dimiduk D M. Flow behavior of PST and fully lamellar polycrystals of Ti-48Al in the microstrain regime [J]. Acta Metall., 1998, 46: 4005
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|