Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (7): 505-510    DOI: 10.11901/1005.3093.2019.476
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of Laser Butt Welded 301L Cold-rolled Plates of Different Strength
FAN Jiafei1, LIU Wei1(), GUO Xiangzhong1, LI Xiqing1, HU Liguo2
1.School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2.CRRC Chang Chun Railway Vehicles Co. Ltd. , Changchun 130062, China
Cite this article: 

FAN Jiafei, LIU Wei, GUO Xiangzhong, LI Xiqing, HU Liguo. Microstructure and Mechanical Properties of Laser Butt Welded 301L Cold-rolled Plates of Different Strength. Chinese Journal of Materials Research, 2020, 34(7): 505-510.

Download:  HTML  PDF(4366KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and tensile properties of laser butt welding joints for cold-rolled plates of metastable austenitic stainless steel with four grades of strength were investigated, namely 301L-DLT, 301L-ST, 301L-MT and 301L-HT. The laser molten pool solidifies as primary ferrites and the formed weld bead presents low thermal cracking susceptibility, which is composed of columnar grains that grew vertically inward from the fusion boundary, but a central equiaxed grain region is absent. Microstructure of the weld seam consists of austenite and lathy, skeleton- and vermicular-ferrite, while no impurities, hot cracking and precipitates were detected. The average spacing of the primary ferrite dendritic arms is approximately 17.5 μm, and the average ferrite amount is 5.7% (volume fraction). The hardness of weld seam is 208~241HV, which is lower than the hardness of 301L-ST, 301L-MT and 301L-HT plates. The tensile fracture of laser weld joints of 301L-DLT and 301L-ST occurs within the base metal, and that of 301L-MT and 301L-HT takes place in the weld seam, correspondingly their fracture strength is 886 MPa and 921 MPa respectively. Except for the lower plasticity of the 301L-HT weld joint, the tensile properties of weld joint of the other three steels all meet the requirements of mechanical properties in JIS G 4305 standard for the cold-rolled 301L plates of the relevant strength grade.

Key words:  metallic materials      cold-rolled 301L plates      laser butt weld      solidification microstructure      mechanical property     
Received:  15 October 2019     
ZTFLH:  TG457.1  
Fund: Scientific Research and Development Projects of China Railways Corporation(2017J011-C)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.476     OR     https://www.cjmr.org/EN/Y2020/V34/I7/505

CSiMnNiCrN
0.0220.321.267.3217.710.13
Table 1  Chemical compositions of 301L plate (mass fraction, %)
PlateR0.2/MPaRm/MPaδ/%
301L-DLT36574053
301L-ST43579052
301L-MT52488037
301L-HT70095028
Table 2  Mechanical properties of 301L plates
Fig.1  Dimensions of laser welded tensile specimen
Fig.2  Microstructure of laser butt welded joint (a) overall view of welded joint; (b) optical micrograph of upper weld; (c) optical micrograph of weld bottom; (d) SEM micrograph of middle weld center; (e) lathy ferrite bunch in SEM micrograph; (f) SEM micrograph of bottom weld center
Fig.3  Microhardness profiles of laser welded 301L cold-rolled plates with different strengths
Fig.4  Tensile curves of laser welded 301L cold-rolled plates with different strengths
Fig.5  Tensile fracture positions of laser butt welded 301L cold-rolled plates with four grade strengths (a) 301L-DLT, (b) 301L-ST, (c) 301L-MT, (d) 301L-HT
Fig.6  Fracture morphologies of upper laser weld (a), bottom laser weld (b) and 301L-DLT plate (c)
[1] Yu J, Rombouts M, Maes G. Cracking behavior and mechanical properties of austenitic stainless steel parts produced by laser metal deposition [J]. Mater. Des., 2013, 45: 228
doi: 10.1016/j.matdes.2012.08.078
[2] Lin X, Yang H O, Chen J, et al. Microstructure evolution of 316L stainless steel during laser rapid forming [J]. Acta Metall. Sin., 2006, 42: 361
(林鑫, 杨海欧, 陈静等. 激光快速成形过程中316L不锈钢显微组织的演变 [J]. 金属学报, 2006, 42: 361)
[3] Yang JJ, Wang Y, Li F Z, et al. Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints [J]. J. Mater. Sci. Technol., 2019, 35: 1817
doi: 10.1016/j.jmst.2019.04.017
[4] Lee D J, Byun J C, Sung J H, et al. The dependence of crack properties on the Cr/Ni equivalent ratio in AISI 304L austenitic stainless steel weld metals [J]. Mater. Sci. Eng. A, 2009, 513-514: 154
doi: 10.1016/j.msea.2009.01.049
[5] Lippold J C, Kotecki D J. Welding Metallurgy and Weldability of Stainless Steels [M]. New Jersey: Wiley-Interscience, 2008
[6] Fukumoto S, Fujiwara K, Toji S, et al. Small-scale resistance spot welding of austenitic stainless steels [J]. Mater. Sci. Eng. A, 2008, 492: 243
doi: 10.1016/j.msea.2008.05.002
[7] Singh S, Hurtig K, Andersson J. Investigation on effect of welding parameters on solidification cracking of austenitic stainless steel 314 [J]. Procedia Manuf., 2018, 25: 351
[8] Yan J, Gao M, Zeng X Y. Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding [J]. Opt. Laser Eng., 2010, 48: 512
doi: 10.1016/j.optlaseng.2009.08.009
[9] Lippold J C. Solidification behavior and cracking susceptibility of pulsed-laser welds in austenitic stainless steels [J]. Weld. J., 1994, 73: 129
[10] Fang F, Li J Y, Wang Y D, Influences of alloying elements and solidification modes on the nitrogen content of nitrogenous stainless steel [J]. J. Univ. Sci. Technol. Beijing, 2014, 36: 1052
(房菲, 李静媛, 王一德. 合金元素及凝固模式对含氮不锈钢氮含量的影响 [J]. 北京科技大学学报, 2014, 36: 1052)
[11] Shankar V, Gill T P S, Mannan S L, et al. Effect of nitrogen addition on microstructure and fusion zone cracking in type 316L stainless steel weld metals [J]. Mater. Sci. Eng. A, 2003, 343: 170
doi: 10.1016/S0921-5093(02)00377-5
[12] Deng B Z, Ma C Y, Peng Y, et al. Effect of nitrogen on solidification mode and microstructure of 316L stainless steel [J]. Trans. China Weld. Inst., 2010, 31(5): 82
(邓宝柱, 马成勇, 彭云等. 氮对316L不锈钢焊缝凝固模式和组织的影响 [J]. 焊接学报, 2010, 31(5): 82)
[13] Shankar V, Gill T P S, Mannan S L, et al. Evaluation of hot cracking nitrogen-bearing and fully austenitic stainless steel weldments [J]. Weld. J., 1998, 77: 193
[14] Liu W, Li Z B, Wang X, et al. Effect of strain rate on strain induced α'-martensite transformation and mechanical response of austenitic stainless steels [J]. Acta Metall. Sin., 2009, 45: 285
(刘伟, 李志斌, 王翔等. 应变速率对奥氏体不锈钢应变诱发α'-马氏体转变和力学行为的影响 [J]. 金属学报, 2009, 45: 285)
[15] Tang D, Wang C M, Tian M, et al. Contrasting study on quality of SUS301L-HT jointsin fiber laser welding and MIG welding [J]. Chin. J. Laser, 2015, 42: 0703003
(唐舵, 王春明, 田曼等. SUS301L-HT不锈钢激光焊接与MIG焊接对比试验研究 [J]. 中国激光, 2015, 42: 0703003)
[16] Chen Y, Wu S K, Xiao R S. Mircostructure and performance of CO2-MIG hybrid welding of SUS301L stainless steel [J]. Chin. J. Lasers, 2014, 41: 0103004
(陈洋, 吴世凯, 肖荣诗. SUS301L不锈钢CO2激光-MIG复合焊接头组织性能研究 [J]. 中国激光, 2014, 41: 0103004)
[17] Zeng Q, Zhu S W, Fu Z H. Effects of different welding processes on microstructure and mechanical properties of SUS301L-MT stainless steel joints [J]. Laser Optoelectronics Progress, 2018, 55: 031405
doi: 10.3788/LOP
(曾强, 朱绍维, 付正鸿. 不同焊接工艺对SUS301L-MT不锈钢接头组织和力学性能的影响 [J]. 激光与光电子学进展, 2018, 55: 031405)
[18] Katayama S, Matsunawa A. Solidification microstructure of laser welded stainless steels [A]. Proceedings of Material Processing Symposium [C]. Laser Institute of America. 1984, 60, doi: 10.2351/1.5057623
[19] Huang F X, Wang X H, Wang W J. Effect of cooling rate on the solidification process of austenitic stainless steel by in-situ observation [J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 530
(黄福祥, 王新华, 王万军. 冷却速率对奥氏体不锈钢凝固过程影响的原位观察 [J]. 北京科技大学学报, 2012, 34: 530)
[20] Wang R P, Lei Y P, Shi Y W. Numerical simulation of transient temperature field during laser keyhole welding of 304 stainless steel sheet [J]. Opt. Laser Technol., 2011, 43: 870
doi: 10.1016/j.optlastec.2010.10.007
[21] Artinov A, Bachmann M, Rethmeier M. Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates [J]. Int. J. Heat Mass Transfer, 2018, 122: 1003
doi: 10.1016/j.ijheatmasstransfer.2018.02.058
[22] Li X Y, Wang L J, Yang L J, et al. Modeling of temperature field and pool formation during linear laser welding of DP1000 steel [J]. J. Mater. Proc. Technol., 2014, 214: 1844
doi: 10.1016/j.jmatprotec.2014.03.030
[23] Ramirez A J, Lippold J C. High temperature behavior of Ni-base weld metal: Part II-Insight into the mechanism for ductility dip cracking [J]. Mater. Sci. Eng. A, 2004, 380: 245
doi: 10.1016/j.msea.2004.03.075
[24] Collins M G, Ramirez A J, Lippold J C. An investigation of ductility-dip cracking in nickel-based weld metals-Part III [J]. Weld. J., 2004, 83: 39/S
[25] Guan K, Wang Z M, Gao M, et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel [J]. Mater. Des., 2013, 50: 581
doi: 10.1016/j.matdes.2013.03.056
[26] Wang X L, Deng D W, Yi H L, et al. Influences of pulse laser parameters on properties of AISI316L stainless steel thin-walled part by laser material deposition [J]. Opt. Laser Technol., 2017, 92: 5
doi: 10.1016/j.optlastec.2016.12.021
[27] Zhang Y K, Zhang L, Luo K Y, et al. Effects of Laser Shock Processing on Mechanical Properties of Laser Welded ANSI 304 Stainless Steel Joint [J]. Chin. J. Mech. Eng., 2012, 25: 285
doi: 10.3901/CJME.2012.02.285
[28] Chen J K, Shi Y, Liu J, et al. A study of austenitic stainless steel laser welding process [J]. Appl. Laser, 2015, 35: 335
doi: 10.3788/AL
(陈俊科, 石岩, 刘佳等. 奥氏体不锈钢激光焊接工艺研究 [J]. 应用激光, 2015, 35: 335)
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!