Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (5): 337-344    DOI: 10.11901/1005.3093.2019.382
ARTICLES Current Issue | Archive | Adv Search |
Effect of Quench Rate on Mechanical Properties and Microstructure of 6082 Al-alloy
WANG Jing1, XU Guofu1,2, LI Yao1, LI Fangfang1, HUANG Jiwu1,2, PENG Xiaoyan1()
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
Cite this article: 

WANG Jing, XU Guofu, LI Yao, LI Fangfang, HUANG Jiwu, PENG Xiaoyan. Effect of Quench Rate on Mechanical Properties and Microstructure of 6082 Al-alloy. Chinese Journal of Materials Research, 2020, 34(5): 337-344.

Download:  HTML  PDF(6400KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The quenching sensitivity of 6082 Al-alloy used in rail transit was investigated systematically by means of Jominy end-quench (JEQ) test, JMatpro7.0 simulation software, hardness test, tensile test and TEM. Results show that (1) The quenching sensitive temperature range is between 220~425℃. The nasal tip temperature for β'- and β''-phase is 375℃. According to the CCT curve, in order to suppress the precipitation of metastable β'- phase the cooling rate should be greater than 6℃/s during quenching process; (2) The hardness and strength decreased with the increase of the distance from the quenched end, and the depth of aging hardening layer is about 23 mm; (3) the quench-induced β-precipitates preferentially precipitated and grown on the heterogeneous nucleation site of α-(AlMnFeSi) phase, with the decrease of quenching cooling rate. During the subsequent aging process, the β-phase grows and absorbs the surrounding solute atoms, the strengthening precipitated β''-phase is reduced; (4) During the slow cooling process, the vacancy concentration near the grain boundaries decreases, and the precipitationfree precipitation zone (PFZ) at the grain boundaries widens.

Key words:  metallic materials      6082 aluminum alloy      Jominy end-quench      mechanical properties      microstructure     
Received:  02 August 2019     
ZTFLH:  TG146.2  
Fund: Scientific Research Program of Guangdong Province(2016B090931004);Postdoctoral Science Foundation of Central South University(220363)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.382     OR     https://www.cjmr.org/EN/Y2020/V34/I5/337

MgSiCuFeMnCrZnTiAl
0.971.200.010.220.870.180.020.04Bal
Table 1  Chemical composition of the investigated 6082 aluminum alloy (mass fraction, %)
Fig.1  Jominy end-quench test schematic diagram (a) and the Jominy end-quench sample (b)
Fig.2  Simulation of 6082 alloy by JMatPro 7.0 software (a) TTT curve; (b) CCT curve
Fig.3  Cooling curve of jominy end-quench (a) and Av (b)
Fig.4  mechanical properties of as-aged JEQ bar (a) Hardness curve and hardness loss value; (b) Curve drawn by the tensile result at different positions
Fig.5  TEM structure observation of as-quenched 6082 alloy (a), (d) D=1 mm; (b) D=20 mm; (c), (e), (f) D=70 mm
Fig.6  TEM observation of as-aged 6082 alloy (a), (d) D=1 mm; (b), (d) D=20 mm; (c), (f) D=70 mm
Fig.7  TEM morphology of grain boundary of as-aged 6082 alloy (a) D=1 mm; (b) D=20 mm; (c) D=70 mm
Fig.8  TEM morphology in grain of as-aged 6082 alloy (a), (c) D=1 mm; (b), (d) D=70 mm
Fig.9  Relationship between hardness of alloy in aging state and quenching cooling rate
[1] Wang H L, Zeng X H, Zhang X M, et al. Microstructure and properties of 5083 and 6061 aluminum alloy friction stir welded joints [J]. Chin. J. Mater. Res., 2018, 32(6)
(王洪亮, 曾祥浩, 张欣盟等. 5083和6061铝合金异种搅拌摩擦焊接接头的组织和性能 [J]. 材料研究学报, 2018, 32(6))
[2] Ding X Q, He G Q, Chen C S, et al. Research and application progress of 6000 series aluminum alloy for automobile [J]. J. Mater. Sci. Eng., 2005, 23(2): 302
(丁向群, 何国求, 陈成澍等. 6000系汽车车用铝合金的研究应用进展 [J]. 材料科学与工程学报, 2005, 23(2): 302)
[3] Panigrahi S K, Jayaganthan R. A study on the mechanical properties of cryorolled Al-Mg-Si alloy [J]. Mater. Sci. Eng. A., 2008, 480(1): 299
[4] Wen L, Wang M J, Gao M, et al. Research on quenching sensitivity of 6061 aluminum alloy [J]. Trans. Mater. Heat. Treat, 2014, 35(1):94
(温柳, 王孟君, 高萌等. 6061铝合金的淬火敏感性研究 [J]. 材料热处理学报, 2014, 35(01): 94)
[5] Li H Y, Zeng C T, Han M S, et al. Time-temperature-property curves for quench sensitivity of 6063 aluminum alloy [J]. T. Nonferr, Metal. Soc., 2013, 23(1): 38
[6] Strobel K, Lay M D H, Easton M A, et al. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060 [J]. Mater Charact., 2016, 111: 43
[7] Tzeng Y C, Wu C T, Lee S L. The effect of trace Sc on the quench sensitivity of Al-7Si-0.6 Mg alloys [J]. Mater Lett., 2015, 161: 340
[8] Strobel K, Easton M A, Sweet L, et al. The Effect of Natural Ageing on Quench Sensitivity in Al-Mg-Si Alloys [J]. Icaa13 Pittsburgh., 2016: 1187
[9] Castany P, Diologent F, Rossoll A, et al. Influence of quench rate and microstructure on bendability of AA6016 aluminum alloys [J]. Mater. Sci. Eng. A., 2013, 559(3): 558
[10] Shang B C, Yin Z M, Wang G, et al. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy [J]. Mater Design., 2011, 32(7): 3818
[11] Wan L, Deng Y L, Zhang Y Y, et al. Hardenability of Al-8.0Zn-2.0Mg-1.6Cu aluminum alloy [J]. J. Cent. South. Un., 2011, 42(11): 3289
[12] Tian N, Hong T, Zhao G, et al. Microstructure and Properties of Al-12.7Si-0.7Mg Alloy Extrusion after End-Quenching Test [J]. Mate. Sci. Forum., 2016, 879: 1945
[13] Xie H, Xiao Z, Li Z, et al. Quench Sensitivity of AA7N01 Alloy Used for High-Speed Train Body Structure [J]. JOM, 2018: 1
[14] Jiang F, Huang J, Tang L, et al. Effects of Quench Rate on Mechanical Properties and Microstructures of High-Strength 7046A Aluminum Alloy [J]. JOM, 2018
[15] Shang B C, Yin Z M, Zhou X, et al. Effect of solution-aging on microstructure and properties of 6082 alloy extruded bar [J]. Trans. Mater. Heat. Treat., 2011, 32(1): 77
(商宝川, 尹志民, 周向等. 固溶-时效对6082合金挤压棒材组织性能的影响 [J]. 材料热处理学报, 2011, 32(1): 77)
[16] Zhang X M, Ke B, Tang J G, et al. Influence of Mn content on microstructure and mechanical properties of 6061 aluminum alloy [J]. Chin. J. Mater. Res., 2013, (4): 337
(张新明, 柯彬, 唐建国等. Mn含量对6061铝合金组织与力学性能的影响 [J]. 材料研究学报, 2013, (4): 337)
[17] Lodgaard L, Ryum N. Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys [J]. Mater. Sci. Eng. A. (Structural Materials: Properties, Microstructure and Processing), 2000, 283(1-2): 144
[18] Tsao C S, Chen C Y, Kuo T Y. Precipitation kinetics and transformation of metastable phases in Al-Mg-Si alloys [J]. Acta Mater., 2006, 54(17): 4621
[19] Andersen S J, Vissers R, Zandbergen H W, et al. The crystal structure of the β′ phase in Al-Mg-Si alloys [J]. Acta Mater., 2007, 55(11): 3815
[20] Milkereit B, Wanderka N, Schick C, et al. Continuous cooling precipitation diagrams of Al-Mg-Si alloys [J]. Mater. Sci. Eng. A. (Structural Materials: Properties, Microstructure and Processing), 2012, 550: 87
[21] Cui L X, Liu Z X, Zhao X G, et al. Precipitation of metastable phases and its effect on electrical resistivity of Al-0.96Mg2Si alloy during aging [J]. Trans. Nonferrous Metal Soc., 2014, 24(7): 2266
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!