Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (12): 927-934    DOI: 10.11901/1005.3093.2019.315
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of a Novel Heterogeneous Cold-rolled Medium Mn Steel with High Product of Strength and Ductility
ZHANG Xiliang, HOU Huafeng, LIU Tao(), LIU Hongji, ZHOU Qian, ZHAO Leijie, LIU Xiaoyan, CUI Haoxuan
College of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan 056038, China
Cite this article: 

ZHANG Xiliang, HOU Huafeng, LIU Tao, LIU Hongji, ZHOU Qian, ZHAO Leijie, LIU Xiaoyan, CUI Haoxuan. Microstructure and Mechanical Properties of a Novel Heterogeneous Cold-rolled Medium Mn Steel with High Product of Strength and Ductility. Chinese Journal of Materials Research, 2019, 33(12): 927-934.

Download:  HTML  PDF(24557KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The mechanical properties of a novel heterogeneous cold-rolled medium Mn steel were investigated by means of mechanical testers, in situ EBSD (electron back-scattered diffraction) and SDTEM (spherical differential transmission electron microscope). The results show that the sample annealed at 680°C consists of multiple microstructure of austenites (granular shape, blocky shape, and lath-like shape) and fine ferrite grains. The heterogeneous steel has ultimate tensile strength of 1.27 GPa, total elongation of 54.5% and product of strength and elongation of 69.3 GPa·%. During tensile deformation the granular-shape austenite with a low C/Mn content preferentially transforms into martensite ahead of the blocky-shape and lath-like austenite with high C/Mn content, and the multi-type microstructure of austenite with various stability lead to a continuous TRIP effect in a large strain region, which is responsible for the excellent properties of the heterogeneous medium Mn steel. In addition, austenite grain boundaries or austenite/ferrite interfaces are the preferred nucleation zone of martensite during deformation. The effect of Mn/C content on austenite stability readily overrides those of grain size.

Key words:  metallic materials      medium Mn TRIP steel      microstructure      heterogeneous structure      mechanical properties      in situ EBSD     
Received:  25 June 2019     
ZTFLH:  TG113  
Fund: National Natural Science Foundation of China(51874114);National Natural Science Foundation of China(51701059)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.315     OR     https://www.cjmr.org/EN/Y2019/V33/I12/927

Fig.1  Engineering stress-strain curves of the present steels annealed at different temperature

YS

/MPa

UTS

/MPa

TE

/MPa

PSE

/GPa?%

Volume fraction of γ/%Average grain size of γ/μm
EBSDXRD
A66980107218.119.48.321.10.33
A681060127254.569.33436.30.41
A70849129823.530.54241.30.67
Table 1  Tensile test results of the annealed and tempered steels
Fig.2  TEM investigations of retained austenite in specimen A68 (a) Bright field image (b) Austenite dark field image of Fig.a
Fig.3  Interrupted in situ EBSD of sample A68 deformed at tensile strains of 0%~40% (a) phase map and (b) KAM map of FCC γ grain. (c) Inverse pole figure (IPF) of γ
Fig.4  IPF distribution-contour of sample A68 deformed at tensile strains of 0%~40%
Fig.5  Microstructure and element distribution map of sample A68
Fig.6  Schematic sketch of the microstructure evolution behavior during various treatments of the heterogeneous medium Mn steel
Fig.7  Work hardening rate and the volume fraction of austenite vs true strain of A66, A68 and A70 samples
[1] Hu Z P, Xu Y B, Liu H, et al. Microstructure evolution and mechanical properties of cold-rolled Mn-Al TRIP steel with δ ferrite [J]. Chin. J. Mater. Res., 2018, 32(3): 177
doi: 10.11901/1005.3093.2018.131
(胡智评, 许云波, 刘 慧等. 含δ铁素体Mn-Al系TRIP钢冷轧退火过程的组织性能 [J]. 材料研究学报, 2018, 32(3): 177)
doi: 10.11901/1005.3093.2018.131
[2] Park S J, Hwang B, Lee K H, et al. Microstructure and tensile behavior of duplex low-density steel containing 5mass% aluminum [J]. Scr. Mater., 2013, 68(6): 365
doi: 10.1016/j.scriptamat.2012.09.030
[3] Cai Z H, Ding H, Kamoutsi H, et al. Interplay between deformation behavior and mechanical properties of intercritically annealed and tempered medium-manganese transformation-induced plasticity steel [J]. Mat. Sci. Eng. A-Struct, 2016, 654: 359
doi: 10.1016/j.msea.2015.12.057
[4] Xing J, Yuan F, Wu X. Enhanced quasi-static and dynamic shear properties by heterogeneous gradient and lamella structures in 301 stainless steels [J]. Mat. Sci. Eng. A-Struct., 2017, 680: 305
doi: 10.1016/j.msea.2016.10.111
[5] Liu X, Yuan F, Zhu Y, et al. Extraordinary Bauschinger effect in gradient structured copper [J]. Scr. Mater., 2018, 57: 150
[6] Yang M, Pan Y, Yuan F, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4(3): 145
doi: 10.1080/21663831.2016.1153004
[7] Wu X L, Yang M X, Yuan F P, et al. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility [J]. Acta Mater., 2016, 112: 337
doi: 10.1016/j.actamat.2016.04.045
[8] Fan X. Metallic X-ray Physics [M]. Beijing:Mechanical Industry Press, 1989
(范 雄. 金属X射线学 [M]. 北京: 机械工业出版社, 1898)
[9] Liu T, Hou H F, Zhang X L. Effects of prestrain and grain boundary segregation of impurity atoms on bake hardening behaviors of Ti+V-bearing ultra-low carbon bake hardening steel [J]. Mat. Sci. Eng. A-Struct., 2018, 726: 160
doi: 10.1016/j.msea.2018.04.060
[10] Li Z C, Misra R D K, Cai Z H, et al. Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect [J]. Mat. Sci. Eng. A-Struct, 2016, 673: 63
doi: 10.1016/j.msea.2016.07.023
[11] Dong H, Qang M Q, Weng Y Q. Performance improvement of steels through M3 struture control [J]. Iron & Steel, 2010, 45(7): 1
(董 瀚, 王毛球, 翁宇庆. 高性能钢的M3组织调控理论与技术 [J]. 钢铁, 2010, 45(7): 1)
[12] Wang M M, Tasan C C, Ponge D, et al. Spectral TRIP enables ductile 1.1 GPa martensite [J]. Acta Mater., 2016, 111: 262
doi: 10.1016/j.actamat.2016.03.070
[13] Wang M, Li Z, Raabe D. In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy [J]. Acta Mater., 2018, 147: 236
doi: 10.1016/j.actamat.2018.01.036
[14] Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59(11): 4653
doi: 10.1016/j.actamat.2011.04.011
[15] Wang M M, Tasan C C, Ponge D, et al. Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels [J]. Acta Mater., 2014, 79: 268
doi: 10.1016/j.actamat.2014.07.020
[16] Sohn S S, Song H, Suh B C, et al. Novel ultra-high-strength (ferrite+austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization [J]. Acta Mater., 2015, 96: 301
doi: 10.1016/j.actamat.2015.06.024
[17] Landheer H, Offerman S E, Petrov R H,et al. The role of crystal misorientations during solid-state nucleation of ferrite in austenite [J]. Acta Mater., 2009, 57(5): 1486
doi: 10.1016/j.actamat.2008.11.034
[18] Gao X T, Zhao A M, Zhang Y. Mechanical property and precipitation of 900 MPa grade hot-rolled TRIP steel [J]. Chin. J. Mater. Res., 2018, 32(9): 24
(高绪涛, 赵爱民, 张 元. 900 MPa级热轧TRIP钢的性能特征和析出行为 [J]. 材料研究学报, 2018, 32(9): 24)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!