Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (9): 650-658    DOI: 10.11901/1005.3093.2019.069
ARTICLES Current Issue | Archive | Adv Search |
Microstructure Evolution and Mechanical Properties of Rapid Solidified AlCoCrFeNi2.1 Eutectic High Entropy Alloy
CAO Leigang1,ZHU Lin1,ZHANG Leilei1,WANG Hui2,CUI Yan1(),YANG Yue1,LIU Fengbin1
1. School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
2. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

CAO Leigang,ZHU Lin,ZHANG Leilei,WANG Hui,CUI Yan,YANG Yue,LIU Fengbin. Microstructure Evolution and Mechanical Properties of Rapid Solidified AlCoCrFeNi2.1 Eutectic High Entropy Alloy. Chinese Journal of Materials Research, 2019, 33(9): 650-658.

Download:  HTML  PDF(7636KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Rods with different diameters and ribbons of the multi-component eutectic high-entropy alloy AlCoCrFeNi2.1 were prepared by vacuum rapid solidification facility. The effect of cooling rate on microstructure and mechanical properties of the alloy was investigated. The results show that all of the alloys consist of FCC and B2 phases. Alloy rods of different diameters present a typical eutectic structure, with the presence of the cellular microstructure at certain sites of axial surface regions. The decrease of the diameter raises the cooling rate of the casting rod, resulting in the decrease of lamellar spacing (λ) of the regular eutectic structure and the increase of yield strength. As the diameter decreases from 8 mm to 2 mm, the values of λ decrease from 530.4 to 357.0 μm in the axial surface regions and from 712.0 μm to 474.0 μm in the axial center regions, resulting in the increase of the yield strength from 690 MPa to 877 MPa. As far as the microstructure morphology of the alloy ribbons is concerned, it can be concluded that the microstructure of the alloy may evolves in the following sequence, namely, regular and irregular eutectic structure, cellular structure and dendrite structure as the cooling rate is increased.

Key words:  metallic materials      eutectic high entropy alloy      rapid solidification      microstructure     
Received:  21 January 2019     
ZTFLH:  TG244  
Fund: Beijing Natural Science Foundation(2194074);National Key Research and Development Program of China(2017YFB0703102);Science and Technology Project of Beijing Municipal Education Commission(KM201910009005);Yuqing Talent Support Program of North China University of Technology(18XN012-081)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.069     OR     https://www.cjmr.org/EN/Y2019/V33/I9/650

Fig.1  Microstructure of the arc-melted AlCoCrFeNi2.1 alloy at low magnification (a) and high magnification (b)
AlloyContent/%, atomic fraction

Average

atomic number

AlCoCrFeNi
Nominal16.3916.3916.3916.3934.43-
B2 phase28.48±1.8212.66±0.469.55±1.2610.70±0.7238.61±1.2023.01
FCC phase11.37±0.2717.90±0.2720.28±0.3918.34±0.3132.11±0.2224.94
Table 1  EDX results of the arc-melted AlCoCrFeNi2.1 alloy and the phases
Fig.2  Microstructures of the surface (left) and center (right) regions of the AlCoCrFeNi2.1 eutectic high-entropy alloy casting rods with different diameters. (a) and (b): 8 mm; (c) and (d): 5 mm; (e) and (f): 2 mm. (I) regular eutectic structure; (II) irregular eutectic structure; (III) cellular eutectic structure
DiameterLocationPhaseAlCoCrFeNi
Nominal--16.3916.3916.3916.3934.43
2 mmSurfaceFCC14.28±0.7017.98±0.3817.57±0.3818.13±0.5532.02±0.46
B223.10±0.9514.91±0.3412.58±0.5913.55±0.3735.86±0.64
CenterFCC15.19±0.6717.46±0.2917.50±0.6717.49±0.2932.36±0.37
B222.06±0.8814.50±0.4313.85±0.4613.73±0.4835.41±0.88
5 mmSurfaceFCC14.24±0.6717.60±0.3918.64±0.7118.18±0.3231.34±0.46
B225.07±1.1014.17±0.5111.68±0.8312.76±0.5436.35±0.80
CenterFCC15.02±0.6017.59±0.2718.00±0.6517.95±0.2931.45±0.25
B225.07±0.8313.95±0.4211.76±0.4412.54±0.5136.69±0.74
8 mmSurfaceFCC12.19±0.5318.30±0.3218.97±0.4418.86±0.3331.65±0.55
B227.65±1.3013.78±0.4810.54±0.8812.19±0.5336.91±0.79
CenterFCC12.42±0.4317.42±0.3120.13±0.3617.90±0.3132.14±0.62
B228.40±0.4812.75±0.239.84±0.5310.96±0.2938.05±0.52
Table 2  EDX results of the FCC and B2 phases in the surface and center regions of the casting rods with different diameters (%, atomic fraction)
Fig.3  Engineering compressive stress-strain curves for the AlCoCrFeNi2.1 alloy rods with different diameters at room temperature
Fig.4  Average lamellar spacings of the regular structure observed in the surface and center regions of the casting rods with different diameters
Fig.5  Microstructure evolution of the AlCoCrFeNi2.1 alloy ribbons: (a) the transition from dendrite struc-ture to cellular and then regular eutectic structure; (b) the transition from cellular eutectic structure to regular eutectic structure
Fig.6  XRD results from the contact and free surface of the AlCoCrFeNi2.1 ribbons
Fig.7  Schematic diagram of Microstructure evolution of AlCoCrFeNi2.1 eutectic high entropy alloy as the cooling rate is increased
1 GreerA L. Confusion by design [J]. Nature, 1993, 366: 303
2 InoueA. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
3 InoueA, TakeuchiA. Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 16
4 CantorB, ChangI T H, KnightP, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375-377A: 213
5 ZhangY. Amorphous and High Entropy Alloys [M]. Beijing: Science Press, 2010
5 张 勇. 非晶和高熵合金 [M]. 北京: 科学出版社, 2010
6 WangJ, HuangW G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chin. J. Meter. Res., 2016, 30: 609
6 王 江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30: 609
7 NongZ S, LiH Y, WangJ J. Thermal stability of AlCrFeNiTi high entropy alloy [J]. Rare Met. Mater. Eng., 2018, 47: 191
7 农智升, 李宏宇, 王继杰. AlCrFeNiTi高熵合金热稳定性的研究 [J]. 稀有金属材料与工程, 2018, 47: 191
8 ShahmirH, MousaviT, HeJ Y, et al. Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing [J]. Mater. Sci. Eng., 2017, 705A: 411
9 DongY, ZhouK Y, LuY P, et al. Effect of vanadium addition on the microstructure and properties of AlCoCrFeNi high entropy alloy [J]. Mater. Des., 2014, 57: 67
10 WuX C, ZhangW Q, QinL, et al. Effects of Annealing treatment on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy [J]. Hot Work. Technol., 2015, 44(8): 220
10 吴兴财, 张伟强, 秦 力等. 退火处理对AlCoCrFeNi高熵合金组织结构及性能的影响 [J]. 热加工工艺, 2015, 44(8): 220)
11 TakeuchiA, AmiyaK, WadaT, et al. High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams [J]. JOM, 2014, 66: 1984
12 BaoM L, QiaoJ W. Research progress of hexagonal close-packed high-entropy alloys [J]. Mater. China, 2018, 37: 264
12 鲍美林, 乔珺威. 密排六方结构高熵合金研究进展[J]. 中国材料进展, 2018, 37: 264
13 HeJ Y, LiuW H, WangH, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
14 WangW R, WangW L, WangS C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
15 TongC J, ChenM R, YehJ W, et al. Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements [J]. Metall. Mater. Trans., 2005, 36A: 1263
16 MilenkovicS, CaramR. Effect of the growth parameters on the Ni-Ni3Si eutectic microstructure [J]. J. Cryst. Growth, 2002, 237-239: 95
17 LuY P, DongY, GuoS, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
18 GludovatzB, HohenwarterA, CatoorD, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
19 LuY P, GaoX Z, JiangL, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range [J]. Acta Mater., 2017, 124: 143
20 JiangL, LuY P, WuW, et al. Microstructure and mechanical properties of a CoFeNi2V0.5Nb0.75 eutectic high entropy alloy in as-cast and heat-treated conditions [J]. J. Mater. Sci. Technol., 2016, 32: 245
21 DongY, JiangL, JiangH, et al. Effects of annealing treatment on microstructure and hardness of bulk AlCrFeNiMo0.2 eutectic high-entropy alloy [J]. Mater. Des., 2015, 82: 91
22 ZhouK Y, TangZ Y, LuY P, et al. Composition, microstructure, phase constitution and fundamental physicochemical properties of low-melting-point multi-component eutectic alloys [J]. J. Mater. Sci. Technol., 2017, 33: 131
23 WangW R, WangW L, YehJ W. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures [J]. J. Alloys Compd., 2014, 589: 143
24 LiJ S, JiaW J, WangJ, et al. Enhanced mechanical properties of a CoCrFeNi high entropy alloy by supercooling method [J]. Mater. Des., 2016, 95: 183
25 WangF J, ZhangY, ChenG L, et al. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy [J]. J. Eng. Mater. Technol., 2009, 131: 034501
26 Kozie?T. Estimation of cooling rates in suction casting and copper-mould casting processes [J]. Arch. Metall. Mater., 2015, 60: 767
27 WuZ W. Effect of cooling rate on the microstructure and mechanical properties of Mg-Cu-(Y) alloy [D]. Changsha: Central South University, 2007
27 吴志文. 冷却速度对Mg-Cu-(Y)合金组织及力学性能的影响 [D]. 长沙: 中南大学, 2007
28 KarpeB, KosecB, BizjakM. Analyses of the melt cooling rate in the melt-spinning process [J]. J. Achiev. Mater. Manuf. Eng., 2012, 51: 59
29 YehJ W. Recent progress in high-entropy alloys [J]. Eur. Control J., 2006, 31: 633
30 TsaiK Y, TsaiM H, YehJ W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
31 LiQ, ChenW M, ZhongJ, et al. On sluggish diffusion in fcc Al–Co-Cr-Fe-Ni high-entropy alloys: an experimental and numerical study [J]. Metals, 2018, 8: 16
32 TanY M, LiJ S, WangJ, et al. Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy [J]. Intermetallics, 2017, 85: 74
33 WangR, ChenW M, ZhongJ, et al. Experimental and numerical studies on the sluggish diffusion in face centered cubic Co-Cr-Cu-Fe-Ni high-entropy alloys [J]. J. Mater. Sci. Technol., 2018, 34: 1791
34 DivinskiS V, PokoevA V, EsakkirajaN, et al. A mystery of "sluggish diffusion" in high-entropy alloys: the truth or a myth? [J]. Diffus. Found., 2018, 17: 69
35 OsetskyY N, BélandL K, BarashevA V, et al. On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys [J]. Curr. Opin. Solid State Mater. Sci., 2018, 22: 65
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!