Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (7): 488-496    DOI: 10.11901/1005.3093.2018.715
ARTICLES Current Issue | Archive | Adv Search |
Effect of Minor Zr Addition on Exfoliation Corrosion Resistance of Al-Zn-Mg-Mn Alloy Sheet
Wenru CHAI1,2,Jingchao CHEN1,2,Shengdan LIU1,2,3(),Lingying YE1,2,3,Huaqiang LIN4,Xinming ZHANG1,2,3
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3. Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
4. National Engineering Research Center for High-speed EMU, CRRC Qingdao Sifang Co. Ltd. , Qingdao 266000, China
Cite this article: 

Wenru CHAI,Jingchao CHEN,Shengdan LIU,Lingying YE,Huaqiang LIN,Xinming ZHANG. Effect of Minor Zr Addition on Exfoliation Corrosion Resistance of Al-Zn-Mg-Mn Alloy Sheet. Chinese Journal of Materials Research, 2019, 33(7): 488-496.

Download:  HTML  PDF(14289KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of minor Zr addition on exfoliation corrosion resistance of Al-Zn-Mg-Mn alloy sheet was studied by means of standard exfoliation corrosion immersion tests and electrochemical impedance spectroscope (EIS) technique combined with optical microscopy (OM), electron back scattering diffraction (EBSD) technique and scanning transmission electron microscopy (STEM). The results showed that due to the addition of Zr the exfoliation corrosion resistance of Al-Zn-Mg-Mn alloy sheet is significantly improved, correspondingly, the maximum corrosion depth decreases from 593 μm to 421 μm and the exfoliation corrosion rating changes from EB to EA. The relevant mechanism was discussed based on the difference of grain structure and the changes of the size, spacing and microchemistry of η precipitates at grain boundaries and the width of precipitate free zone.

Key words:  metallic materials      Al-Zn-Mg alloy      exfoliation corrosion      Zr      microstructure      grain boundary precipitate     
Received:  18 December 2018     
ZTFLH:  TG146  
Fund: National Key Research and Development Program of China(2016YFB0300901);Key Project of Science and Technology of Hunan Province(2016GK1004);Shenghua Yuying Project of Central South University(20130603)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.715     OR     https://www.cjmr.org/EN/Y2019/V33/I7/488

AlloysZnMgCuMnZrFeSiAl
Al-Zn-Mg-Mn4.291.230.150.290.000.160.09Bal.
Al-Zn-Mg-Mn-Zr4.311.190.150.280.120.150.08Bal.
Table 1  Chemical compositions of two aluminum alloy sheets (%, mass fraction)
Fig.1  Grain orientation maps in RD-ND section of (a) Al-Zn-Mg-Mn sheet and (b) Al-Zn-Mg-Mn-Zr sheet, (c) color coded map type: inverse pole figure [001] (RD: rolling direction, ND: normal direction)
Alloys

Size along RD of recrystallized grains

/μm

Size along ND of recrystallized grains

/μm

Recrystallized fraction

/%

SGBs fraction /%

GBs fraction

/%

Al-Zn-Mg-Mn21.6±11.810.7±2.81005.8±1.094.2±1.4
Al-Zn-Mg-Mn-Zr17.6±4.19.3±1.969.4±9.337.9±9.462.1±18.5
Table 2  Grain structures of two test sheets
Fig.2  Vertical section phase diagram of Al-4.3%Zn-1.2%Mg-0.28%Mn-x%Zr alloy
Fig.3  HAADF-STEM image of Al-Zn-Mg-Mn-Zr sh-eet after solution heat treatment
Fig.4  HAADF-STEM images of GBs of (a) Al-Zn-Mg-Mn sheet and (b) Al-Zn-Mg-Mn-Zr sheet
Fig.5  Histograms of (a) size and (b) spacing of grain boundaries precipitates, (c) precipitate free zone width
AlloysWidth of PFZs /nmSize of GBPs /nmSpacing of GBPs/nmArea fraction of GBPs /%Elements of GBPs/%, atomic fraction
ZnMgCu
Al-Zn-Mg-Mn56.1±6.253.6±9.031.5±23.18.4±2.113.1±8.66.5±3.60.6±0.1
Al-Zn-Mg-Mn-Zr52.9±11.384.2±26.272.2±63.48.9±2.713.8±3.36.9±1.10.7±0.1
Table 3  Results of grain boundary characteristics
Fig.6  HAADF-STEM image of Al-Zn-Mg-Mn-Zr sheet
Fig.7  Digital images of the surfaces of two sheets after immersion in EXCO solution for 2 h and 48 h (RD: rolling direction, TD: transverse direction)
Fig.8  Optical micrographs of the cross sections of (a) Al-Zn-Mg-Mn and (b) Al-Zn-Mg-Mn-Zr sheets after immersion in EXCO solution for 48 h
AlloysCorrosion rating

Maximum corrosion depth

/μm

RsCPERtRpL
/Ω·cm2/F·cm-2/Ω·cm2/Ω·cm2/H·cm2
Al-Zn-Mg-MnEB5931.738.85×10-6227.8425.4411.3
Al-Zn-Mg-Mn-ZrEA42113.961.14×10-5383.91418260
Table 4  Results of exfoliation corrosion and electrochemical parameters
Fig.9  Nyquist (a), Bode plots (b) and (c) equivalent circuit model of two tested sheets immersed in EXCO solution
[1] Jin L B, Zhao G, Feng Z H, et al. Weld-able moderate strength Al-Zn-Mg alloy used for high speed train [J]. Light Alloy Fabrication Technology, 2010, 38(12): 47
[1] (金龙兵, 赵 刚, 冯正海等. 高速列车用中强可焊Al-Zn-Mg合金材料 [J]. 轻合金加工技术, 2010, 38(12): 47)
[2] Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52(16): 4727
[3] Liu S D, Guo C, Ye L Y, et al. Influence of quench rate on exfoliation corrosion resistance of rolled 7020 Al-alloy plate [J]. Chinese Journal of Materials Research, 2018, 32(6): 423
[3] (刘胜胆, 郭 琛, 叶凌英等. 淬火速率对7020铝合金板材耐剥落腐蚀性能的影响 [J]. 材料研究学报, 2018, 32(6): 423)
[4] Liao W B, Liu X Y, Liu S D, et al. Effect of exfoliation corrosion on mechanical properties of 7055 aluminum alloy sheet [J]. J. Cent. South Univ. (Sci. Technol.), 2012, 43(6): 2137
[4] (廖文博, 刘心宇, 刘胜胆等. 剥落腐蚀对7055铝合金板材力学性能的影响 [J]. 中南大学学报(自然科学版), 2012, 43(6): 2137)
[5] Xu J, Chen K H, Chen S Y, et al. Effects of minor Ti and Cr additions on microstructure and properties of Al-Zn-Mg-Cu-Zr aluminum alloy [J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(1): 50
[5] (许 杰, 陈康华, 陈送义等. 微量Ti、Cr对Al-Zn-Mg-Cu-Zr合金组织与性能的影响 [J]. 粉末冶金材料科学与工程, 2016, 21(1): 50)
[6] Fang H C, Chao H, Chen K H, et al. Microstructures, fracture and localized corrosion behaviors of Al-Zn-Mg-Cu alloy with Zr, Yb and Cr additions [J]. Chinese Journal of Rare Metals, 2015, 39(8): 686
[6] (方华婵, 巢 宏, 陈康华等. Zr, Yb, Cr对Al-Zn-Mg-Cu合金组织、断裂和局部腐蚀行为的影响 [J]. 稀有金属, 2015, 39(8): 686)
[7] Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120℃ on the corrosion behaviour of an Al-Zn-Mg alloy [J]. Corros. Sci., 2012, 65: 288
[8] Cai Y H, Hao B, Cui H, et al. Effects and mechanism of manganese on 7000 series Al alloy [J]. Materials Science & Technology, 2008, 16(4): 531
[8] (蔡元华, 郝 斌, 崔 华等. 锰在7000系铝合金中的作用及机理 [J]. 材料科学与工艺, 2008, 16(4): 531)
[9] Pyun S I, Orr S J, Nam S W. Corrosion fatigue crack initiation of Al-Zn-Mg-Mn alloy in 0.5 M Na2SO4 solution [J]. Mater. Sci. Eng. A, 1998, 241(1-2): 281
[10] Jiao H B, Chen S D, Chen S Y, et al. Effect of Mn and Zr on the anisotropy of Al-Zn-Mg-Cu aluminum alloy [J]. Materials Review, 2018, 32(3): 937
[10] (焦慧彬, 陈善达, 陈送义等. Mn和Zr对Al-Zn-Mg-Cu铝合金各向异性的影响 [J]. 材料导报, 2018, 32(3): 937)
[11] Li B, Pan Q L, Huang X, et al. Microstructures and properties of Al-Zn-Mg-Mn alloy with trace amounts of Sc and Zr [J]. Mater. Sci. Eng. A, 2014, 616: 219
[12] Wang Y Y. Corrosion behavior of aluminum alloy in flowing seawater [J]. Equipment Environmental Engineering, 2005, 2(6): 72
[12] (王曰义. 铝合金在流动海水中的腐蚀行为 [J]. 装备环境工程, 2005, 2(6): 72)
[13] Xu Y, Li X B, Yu W X, et al. Effects of rare earth on mechanical properties and stress corrosion behavior of Al-Zn-Mg alloy [J]. Journal of Jilin University (Science Edition), 2003, 41(4): 506
[13] (徐 跃, 李雪冰, 于文学等. 稀土对Al-Zn-Mg合金力学性能和应力腐蚀的影响 [J]. 吉林大学学报(理学版), 2003, 41(4): 506)
[14] Zhang X M, Liu S D, Liu Y, et al. Influence of quench rate and zirconium content on intergranular corrosion of 7055 type aluminum alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2007, 38(2): 181
[14] (张新明, 刘胜胆, 刘 瑛等. 淬火速率和锆含量对7055型铝合金晶间腐蚀的影响 [J]. 中南大学学报(自然科学版), 2007, 38(2): 181)
[15] Li J J, Zhang C L, Godfrey A, et al. EBSD investigation for influences of austenitization time and cooling rate on microstructure in a ultrahigh carbon steel [J]. J. Chin. Electr. Microsc. Soc., 2013, 32(6): 453
[15] (李俊杰, 张成路, Godfrey A等. 奥氏体化时间与冷却速率对超高碳钢组织影响的EBSD研究 [J]. 电子显微学报, 2013, 32(6): 453)
[16] Xie Y H, Yang S J, Dai S L, et al. Application of element Zr in aluminum alloys [J]. Journal of Aeronautical Materials, 2002, 22(4): 56
[16] (谢优华, 杨守杰, 戴圣龙等. 锆元素在铝合金中的应用 [J]. 航空材料学报, 2002, 22(4): 56)
[17] Liu S D, Chen B, Li C B, et al. Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy [J]. Corros. Sci., 2015, 91: 203
[18] Sun X Y, Zhang B, Lin H Q, et al. Correlations between stress corrosion cracking susceptibility and grain boundary microstructures for an Al-Zn-Mg alloy [J]. Corros. Sci., 2013, 77: 103
[19] Li S, Dong H, Li P, et al. Effect of repetitious non-isothermal heat treatment on corrosion behavior of Al-Zn-Mg alloy [J]. Corros. Sci., 2018, 131: 278
[20] Song F X, Zhang X M, Liu S D, et al. The effect of quench rate and overageing temper on the corrosion behaviour of AA7050 [J]. Corros. Sci., 2014, 78: 276
[21] Huang L P, Chen K H, Li S. Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng. B, 2012, 177(11): 862
[22] Li C B, Zhang X M, Liu S D, et al. Quench sensitivity relative to exfoliation corrosion of 7085 aluminum alloy [J]. Chinese Journal of Materials Research, 2013, 27(5): 454
[22] (李承波, 张新明, 刘胜胆等. 7085铝合金剥落腐蚀的淬火敏感性 [J]. 材料研究学报, 2013, 27(5): 454)
[23] Knight S P, Birbilis N, Muddle B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2010, 52: 4073
[24] Yang Y, Chen Z J, Zhou R, et al. Study on exfoliation corrosion resistance of Al-Zn-Mg-Cu aluminum alloy [J]. Metallic Functional Materials, 2013, 20(3): 6
[24] (杨 弋, 陈忠家, 周 如等. Al-Zn-Mg-Cu系铝合金抗剥落腐蚀性能研究 [J]. 金属功能材料, 2013, 20(3): 6)
[25] Li C B, Liu S D, Wang G W, et al. Effect of cooling rate on exfoliation corrosion of Al-Zn-Mg-Cu alloy thick plate [J]. Chinese Journal of Materials Research, 2013, 27(3): 259
[25] (李承波, 刘胜胆, 王国玮等. 冷却速率对Al-Zn-Mg-Cu合金厚板剥落腐蚀的影响 [J]. 材料研究学报, 2013, 27(3): 259)
[26] Shi Y J, Pan Q L, Li M J, et al. Effect of Sc and Zr additions on corrosion behaviour of Al-Zn-Mg-Cu alloys [J]. J. Alloys Compd., 2014, 612: 42
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!