Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (2): 87-94    DOI: 10.11901/1005.3093.2018.510
Current Issue | Archive | Adv Search |
Formation Mechanism of Ni/WC Composite Coatings on Carbon Steel
Guirong YANG1(),Dawen GAO1,Wenming SONG2,Yufu ZHANG2,Ying MA1
1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2. Lanpec Technologies Co. Ltd., Lanzhou 730070, China
Cite this article: 

Guirong YANG,Dawen GAO,Wenming SONG,Yufu ZHANG,Ying MA. Formation Mechanism of Ni/WC Composite Coatings on Carbon Steel. Chinese Journal of Materials Research, 2019, 33(2): 87-94.

Download:  HTML  PDF(18359KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni+WC composite cladding was prepared on the surface of 45 # steel by vacuum cladding technology. The formation mechanism of nickel-based composite coating was investigated by intermittently sampling. The results show that a Ni-based composite cladding with metallurgical fusion to the matrix and uniform distribution of WC hard particles is obtained on the surface of 45 steel. The entire cladding consists of a 4 mm thick composite layer, a 1 mm thick transition layer, a 20 μm thick diffusion fused zone, and a 250 μm thick diffusion affected zone. The composite layer composes of WC and W-rich multiphase carbide formed after decomposition, surrounded by Ni particles; The main phase constituents of the composite cladding layer include γ-Ni solid solution, Cr7C3, Ni2.9Cr0.7Fe0.36, Cr23C6, Ni3Fe, Ni3Si, Ni3B, W2C and C. The vacuum cladding process mainly includes the formation of a micro-sintered neck between the particles in the heating stage before the Ni-based alloy particles reach its melting point, and the melting of the Ni-based alloy particles at the beginning stage of its melting point and the third stages of fusion diffusion in the heat preservation stage and position adjustment of the WC particle within micro-area.

Key words:  composite      formation mechanism      vacuum cladding      complex phase carbide     
Received:  16 August 2018     
ZTFLH:  TG174.44  
Fund: Supported by National Natural Science Foundation of China(51765035);Supported by National Natural Science Foundation of China(51205178)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.510     OR     https://www.cjmr.org/EN/Y2019/V33/I2/87

ElementsCSiCrBFeNi
Content0.7~1.13.5~5.015.0~17.03.0~4.0≤5.0Bal.
Table 1  Chemical composition of the Ni based alloy powders (mass fraction, %)
Fig.1  Powder morphology and size (a) Ni-based particles; (b) WC
Fig.2  Ni+20%WC cladding cross-section (a) cladding morphology; (b) diffusion fusion zone (FZ); (c) transition zone (TZ); (d) composite zone (CZ)
Fig.3  Ni+20%WC XRD pattern of the cladding layer
Fig.4  Surface morphologies of preforming composite coating on one side of boding with substrate (a) low magnification; (b) high magnification; (c) morphology of the pit area
ElementsCWCrFeNi
Content68.750.7827.9-2.57
Table 2  Compositions of the points A shown in Fig.4 (atomic fraction, %)
Fig.5  Surface morphologies of the side substrate with composite coating (a) overall surface morphology; (b) low magnification; (c) high magnification
Fig.6  Surface morphologies of composite coating during satge sampling (a) low magnification; (b) high magnification; (c) morphology of floc
Fig.7  Area scanning results of the preforming compsite coating
Fig.8  Peeling coatings side surface morphology (a) side overall topography, (b) A side topography, (c) B side topography
Fig.9  Sectional SEM morphology of the stripping coating (a) overall SEM morphology; (b) section SEM morphology; (c) enlarged section morphology
Fig.10  Schematic diagram of the cladding process (a) before cladding; (b) early cladding; (c) middle cladding; (d) late cladding; (e) schematic illustration
[1] Guo C, Chen J M, Zhou J C, et al. Effects of WC-Ni content on microstructure and wear resistance of laser cladding Ni-based alloys coating [J]. Surf. Coat. Technol., 2012, 206: 2064
[2] Simunovic K, Saric T, Simunovic G. Different approaches to the investigation and testing of the Ni-based self-fluxing alloy coatings—a review. Part 1. General facts, wear and corrosion investigations [J]. Tribol. Trans., 2014, 57: 955
[3] Park Y S, Bae D H. Assessment of the crack growth characteristics at the low fatigue limit of a multi-pass welded Ni-based alloy 617 [J]. J. Mech. Sci. Technol., 2014, 28: 1251
[4] Guo C, Zhou J S, Chen J M, et al. High temperature wear resistance of laser cladding NiCrBSi and NiCrBSi/WC-Ni composite coatings [J]. Wear, 2011, 270: 492
[5] Yang G R, Huang C P, Song W M, et al. Microstructure characteristics of Ni/WC composite cladding coatings [J]. Int. Miner J. Metall. Mater., 2016, 23: 184
[6] Wang X S. Research on the formation mechanisms and properties of Ni-Co/WC+G composite coatings deposited by vacuum cladding on casting steel substrate [D]. Lanzhou: Lanzhou University of Technology, 2016
[6] (王旭升. 铸钢表面Ni-Co/WC+G复合熔覆层的形成机制及性能研究 [D]. 兰州: 兰州理工大学, 2016)
[7] Eso O, Fang Z, Griffo A. Liquid phase sintering of functionally graded WC-Co composites [J]. Int. Refract J. Met. Hard Mater., 2005, 23: 233
[8] Eso O, Fang Z Z, Griffo A. Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC-Co [J]. Int. Refract J. Met. Hard Mater., 2006, 25: 286
[9] Gao Y, Luo B H, He K J, et al. Mechanical properties and microstructure of WC-Fe-Ni-Co cemented carbides prepared by vacuum sintering [J]. Vacuum, 2017, 143: 271
[10] Gao Y, Luo B H, He K J, et al. Effect of Fe/Ni ratio on the microstructure and properties of WC-Fe-Ni-Co cemented carbides [J]. Ceram. Int., 2018, 44: 2030
[11] Elkhoshkhany N, Hafnway A, Khaled A. Electrodeposition and corrosion behavior of nano-structured Ni-WC and Ni-Co-WC composite coating [J]. J. Alloys Compd., 2017, 695: 1505
[12] Babu P S, Rao P C, Jyothirmayi A, et al. Evaluation of microstructure, property and performance of detonation sprayed WC-(W, Cr)2C-Ni coatings [J]. Surf. Coat. Technol., 2018, 335: 345
[13] Ghasali E, Ebadzadeh T, Alizadeh M, et al. Mechanical and microstructural properties of WC-based cermets: A comparative study on the effect of Ni and Mo binder phases [J]. Ceram. Int., 2018, 44: 2283
[14] Cui Z Q, Qin Y C. Metallography and Heat Treatment [M]. 2nd ed. Beijing: China Machine Press, 2007
[14] 崔忠圻, 覃耀春. 金属学与热处理[M]. 2版. 北京: 机械工业出版社, 2007
[15] Yuan Y L, Li Z G. Dissolving and precipitating characteristics of WC and carbides in the Ni60A+WC graded coating [J]. J. Mater. Eng., 2013, (11): 12
[15] (袁有录, 李铸国. Ni60A+WC增强梯度涂层中WC的溶解与碳化物的析出特征 [J]. 材料工程, 2013, (11): 12)
[16] Wang Z H, Yang A D, Zhang T, et al. Dissolution behavior of WC in WC reinforced composite coatings [J]. J. Mater. Eng., 2008, (9): 56
[16] (王智慧, 杨爱弟, 张田等. 真空熔覆WC颗粒增强复合涂层中WC溶解行为的研究 [J]. 材料工程, 2008, (9): 56)
[17] Zhang Z, Liu H X, Zhang X W, et al. Dissolution behavior of WC reinforced particles on carbon steel surface during laser cladding process [J]. Adv. Mater. Res., 2012, 430-432: 137
[18] Lu J B. Interfacial microstructure of vacuum sintered Ni-based coating [J]. Vacuum, 2006, 43(6): 30
[18] (卢金斌. 真空熔结镍基合金的界面组织研究 [J]. 真空, 2006, 43(6): 30)
[19] Lu J B. Study on performance of vacuum sintered Ni-based coating [J]. Surf. Technol., 2006, 35(6): 25
[19] (卢金斌. 真空熔结镍基合金涂层性能的研究 [J]. 表面技术, 2006, 35(6): 25)
[20] Lu J B. Microstructure of vacuum sintered Ni60 alloy and formation mechanism of M7C3 [J]. Weld. Join., 2006, (2): 28
[20] (卢金斌. Ni60合金真空烧结组织及M7C3形成机理 [J]. 焊接, 2006, (2): 28)
[21] Huang X B. Study on the preparation and properties of vacuum fusion sintered WC/Ni and WC/Co composite coatings [D]. Xi'an: Xidian University, 2005
[21] (黄新波. 真空熔覆Ni基合金—碳化钨和Co基合金—碳化钨复合涂层的制备及性能研究 [D]. 西安: 西安电子科技大学, 2005
[22] Huang P Y. Principles of Powder Metallurgy [M]. 2nd ed. Beijing: Metallurgy Industry Press, 1997
[22] (黄培云. 粉末冶金原理 [M]. 第2版. 北京: 冶金工业出版社, 1997)
[23] Günther K, Bergmann J P. Understanding the dissolution mechanism of fused tungsten carbides in Ni-based alloys: An experimental approach [J]. Mater. Lett., 2018, 213: 253
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] ZHOU Zhangrui, LV Peisen, ZHAO Guoqi, ZHANG Jian, ZHAO Yunsong, LIU Lirong. Stress Rupture Deformation Mechanism of Two "Replacement of Re by W" Type Low-cost Second-generation Nickel Based Single Crystal Superalloys at Elevated Temperatures[J]. 材料研究学报, 2023, 37(5): 371-380.
[8] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[9] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!