Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (1): 72-80    DOI: 10.11901/1005.3093.2018.290
ARTICLES Current Issue | Archive | Adv Search |
Reheat Cracking Susceptibility in Coarse Grained Heat-affected Zone of SA508-4 Steel for Nuclear Pressure Vessel
Zhongyi CHEN,Yonglin MA(),Shuqing XING,Qingwei BAI,Yongzhen LIU
Material and Metallurgy School, Inner Mongolia University of Science and Technology, Baotou 014010, China
Cite this article: 

Zhongyi CHEN,Yonglin MA,Shuqing XING,Qingwei BAI,Yongzhen LIU. Reheat Cracking Susceptibility in Coarse Grained Heat-affected Zone of SA508-4 Steel for Nuclear Pressure Vessel. Chinese Journal of Materials Research, 2019, 33(1): 72-80.

Download:  HTML  PDF(17985KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The reheat cracking susceptibility of the coarse-grained heat affected zone (CGHAZ) of SA508-4N steel for nuclear pressure vessel was evaluated by stress-rupture tests at high temperature. The microstructure of the CGHAZ and base metal (BM), as well as the crack- and fracture- morphology were characterized by means of Laser confocal microscope, scanning electron microscopy and transmission electron microscopy. The results show that the microstructure of base metal is tempered martensite, while carbon and chromium content can affect the size and distribution of carbides. The formation of martensite in CGHAZ is not conducive to the suppression of reheat cracking. The precipitation of carbides causes the difference in the strength for grain and grain boundary. When the strength of grain is greater than that of grain boundary, intergranular brittle fracture could emerge. However, when the strength difference between the grain and grain boundary is small, both of the transgranular- and intergranular-fractures could occur. The CGHAZ of SA508-4N steel is not sensitive to reheat cracking, and the resistance to reheat cracking in the CGHAZ of steel A is better than that of Steel B. It follows that the optimum parameters in the actual welding for steel A are as follows: the welding t8/5 is 25 s, and the post weld heat treatment temperature is 580oC.

Key words:  metallic materials      reheat cracking      welding thermal simulation      reactor pressure vessel      microstructure      mechanical properties     
Received:  24 April 2018     
ZTFLH:  TG407  
Fund: National Science and Technology Major Project of China(2009ZX04014-064-05);Inner Mongolia Natural Science Foundation(2016MS0510)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.290     OR     https://www.cjmr.org/EN/Y2019/V33/I1/72

SteelCMnCrNiMoFe
A0.120.362.003.640.60Bal.
B0.200.41.753.600.54Bal.
Table 1  Chemical composition of SA508-4N steel (mass fraction, %)
Fig.1  scheme of stress-rupture tests
Fig.2  Schematic diagram of tensile specimen (unit: mm)
Fig.3  Microstructures of SA508-4N steel (a) Steel A-OM, (b) Steel A-SEM, (c) Steel A-TEM, (d) Steel B-OM,(e) Steel B-SEM, (f) Steel B-TEM
Fig.4  Microstructure in CGHAZ of SA508-4N steel (a) Steel A-OM, (b) Steel A-SEM, (c) Steel A-TEM, (d) Steel B-OM,(e) Steel B-SEM, (f) Steel B-TEM
Fig.5  Strength and plasticity at high temperature (a) tensile strength, (b) reduction of area, (c) elongation
Fig.6  Cracks near the fracture of steel for different parameters (a) Steel A-550℃-50 s, (b) Steel B-550℃-50 s, (c) Steel A-610℃-50 s, (d) Steel B-610℃-50 s
Fig.7  Voids in the direction of crack propagation of steel for different parameters (a) Steel A-550℃-50 s, (b) Steel B-550℃-50 s, (c) Steel A-610℃-50 s, (d) Steel B-610℃-50 s
Fig.8  Fracture morphology of steel for different parameters (a) Steel A-550℃-25 s, (b) Steel A-610℃-150 s, (c) Steel B-550℃-25 s, (d) Steel B-610℃-150 s
1 ZhangM, YangL, LiJ H. Effects of welding heat input on properties of joints of X100 pipeline steel [J]. Chin. J. Mater. Res., 2012, 26(6): 567
1 张敏, 杨 亮, 李继红. 焊接热输人对X100管线钢接头性能的影响 [J]. 材料研究学报, 2012, 26(6): 567)
2 SongY H, ZhangY J, ZhangS Z. Effect of cooling time from 800 to 500℃ on microstructure and properties of HAZ for TMCP890 steel [J]. Chin. J. Mater. Res., 2015, 29(6): 463
2 宋曰海, 张元杰, 张尚洲. 冷却时间对TMCP890钢焊接热影响区组织和性能影响 [J]. 材料研究学报, 2015, 29(6): 463))
3 GuoX T, WangL, QinC L, et al. Effect of heat input on dynamic tensile deformation behavior of Q550 steel [J]. Chin. J. Mater. Res., 2016, 30(11): 811
3 郭晓彤, 王磊, 覃称蕾等. 热输入对Q550钢焊接接头动态拉伸变形行为的影响 [J]. 材料研究学报, 2016, 30(11): 811)
4 ZhangM, RenX L, XingK, et al. Microstructure and low temperature toughness of weld joints prepared by double-sided submerged arc welding for low carbon bainite steel [J]. Chin. J. Mater. Res., 2015,29(10):737
4 张敏, 任晓龙, 邢奎等. 低碳贝氏体钢双面埋弧焊接头的组织和低温韧性 [J]. 材料研究学报, 2015, 29(10): 737)
5 HongZ F, GuoX M, YangC G, et al. Effect of heat treatment on the microstructures and properties of welded joint of 2519 aluminum alloy [J]. Chin. J. Mater. Res., 2006, 20(2): 171
5 洪张飞, 国旭明, 杨成刚等. 热处理对2519铝合金接头组织及性能的影响 [J]. 材料研究学报, 2006, 20(2): 171)
6 DhoogeA, VinckierA. Reheat cracking in welded structures during stress relief heat treatments [J]. J. Heat. Treating., 1979, 1: 72
7 DhoogeA, VinckierA. Reheat cracking—A review of recent studies [J]. Int. J. Pres. Ves. Pip., 1987, 27: 239
8 MoonJ, LeeJ.J, LeeC H,et al. Reheating cracking susceptibility in the weld heat-affected zone of a reduced activation ferritic-martensitic steel for fusion reactors [J]. Fusion. Eng. Des., 2017, 124: 1038
9 HanY C, ChenX D, FanZ C, et al. Influence of second thermal cycle on reheat cracking susceptibility of welding CGHAZ in vanadium-modified 2.25Cr1Mo Steel [J]. Procedia Engineering, 2015, 130: 487
10 LiC L, ZhangM Q. Overview of reactor pressure vessel steel in PWR nuclear power plants [J]. Mater. Rev., 2008, 22(9): 65
10 李承亮, 张明乾. 压水堆核电站反应堆压力容器材料概述 [J]. 材料导报, 2008, 22(9): 65)
11 LiC Y, LiuZ D, LinZ J. Research and application of steels for reactor pressure vessel of nuclear power station [J]. Special Steel, 2010, 31(4): 14
11 李昌义, 刘正东, 林肇杰. 核电站反应堆压力容器用钢的研究与应用 [J]. 特殊钢, 2010, 31(4): 14)
12 ParkD G, HongJ H, KimI S, et al. Evaluation of thermal recovery of neutron-irradiated SA508-3 steel using magnetic property measurements [J]. J. Mater. Sci., 1997, 32: 6141
13 ChiL X, MaY L, XingS Q, et al. Analysis on continuous cooling transformation curves of simulated heat affected zone for SA508-3 steel in nuclear power [J]. Trans. China Weld. Inst., 2011, 32(5): 61
13 迟露鑫, 麻永林, 邢淑清等. 核电SA508-3钢焊接连续冷却转变曲线的分析 [J]. 焊接学报, 2011, 32(5): 61)
14 LeeY S, KimM C, LeeB S, et al. Evaluation of microstructure and mechanical properties on post-weld heat treatment in the heat affected zone of SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessel [J]. Journal of the Korean Institute of Metals and Materials, 2009, 47(3): 139
15 ShiozawaK, MuralM, ShimataniY, et al. Transition of fatigue failure mode of Ni-Cr-Mo low-alloy steel in very high cycle regime [J]. Int. J. Fatigue., 2010, 32: 541
16 LeeK H, ParkS G, KimM C, et al. Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents[J]. Mat. Sci. Eng. A., 2011, 529:156
17 LiC Y, LiuZ D, LinZ J, et al. Hardenability of nuclear reactor pressure vessel steels [J].T. Mater. Heat. Treat., 2011, 32(6): 68
17 李昌义, 刘正东, 林肇杰等. 反应堆压力容器用钢的淬透性问题 [J]. 材料热处理学报, 2011, 32(6): 68)
18 LeeB S, KimM C, YoonJ H, et al. Characterization of high strength and high toughness Ni-Mo-Cr low alloy steels for nuclear application [J]. Int. J. Pres. Ves. Pip., 2010, 87: 74
19 ParkS G, KimM C, LeeB S, et al. Correlation of the thermodynamic calculation and the experimental observation of Ni-Mo-Cr low alloy steel changing Ni, Mo, and Cr contents [J]. J. Nucl. Mater., 2010, 407: 126
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!