Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (6): 439-448    DOI: 10.11901/1005.3093.2017.493
ARTICLES Current Issue | Archive | Adv Search |
Microstructures and Mechanical Properties of Mg-6Gd-4Y-xZn Alloys Reinforced with LPSO Phases
Rui ZHEN1,2(), Yangshan SUN3, Xuewei SHEN1, Zhixin BA1,2
1 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2 Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing 211167, China
3 Jiangsu Key Lab of Advanced Metallic Materials, College of Material Science & Engineering, Southeast University, Nanjing 211189, China;
Cite this article: 

Rui ZHEN, Yangshan SUN, Xuewei SHEN, Zhixin BA. Microstructures and Mechanical Properties of Mg-6Gd-4Y-xZn Alloys Reinforced with LPSO Phases. Chinese Journal of Materials Research, 2018, 32(6): 439-448.

Download:  HTML  PDF(9095KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three quaternary Mg-alloys of Mg-6Gd-4Y-xZn (x=1, 2, 3, mass fraction, %) were prepared, while all the alloys contained strengthened phases of long period stacking ordered (LPSO) structure. The effect of Zn-concentration on the microstructure and mechanical property of the alloys, as well as the formation and evolution of LPSO phases in the alloys and their strengthening mechanism were also studied. Results show that the as-cast microstructure of the Mg-6Gd-4Y-3Zn alloy consists of α-Mg matrix and Mg12Y1Zn1 phase which presents 18R long period staking ordered (18R-LPSO) structure. The Mg24(GdYZn)5 eutectic was observed in the as cast microstructure of the alloys with lower Zn additions. After homogenizing annealing, the microstructure of all the quaternary alloys consists of a-Mg matrix, 18R-LPSO- and 14H-LPSO-phases. With the increase of Zn content, the volume fraction of 18R-LPSO phase increases and the lamellae of the 14H-LPSO phase in the matrix are thickened. Both T6- and T5-treatments result in the β' precipitation. The tensile strength of Mg-6Gd-4Y-xZn alloys decreases with the increase of Zn content. The ideal strengthening effect can be achieved by the coexistence of 18R-LPSO phase, small and well distributed precipitates of 14H-LPSO phase and β' precipitates in the microstructure.

Key words:  metallic materials      magnesium alloy      hot extrusion      aging treatment      long period stacking ordered structures (LPSO)      strengthening mechanism     
Received:  18 August 2017     
ZTFLH:  TG146.22  
Fund: Supported by Natural Science Foundation of Jiangsu Province for Outstanding Youth (No. BK20160081) and the Research Foundation of Nanjing Institute of Technology (No. ZKJ201604) and Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.493     OR     https://www.cjmr.org/EN/Y2018/V32/I6/439

Alloy Design composition Actual composition
Gd Y Zn Mg Gd Y Zn Mg
GWZ641(Mg-6Gd-4Y-1Zn) 6.0 4.0 1.0 Bal. 5.1 3.8 0.88 Bal.
GWZ642(Mg-6Gd-4Y-2Zn) 6.0 4.0 2.0 Bal. 6.3 3.6 2.2 Bal.
GWZ643(Mg-6Gd-4Y-3Zn) 6.0 4.0 3.0 Bal. 6.5 4 2.7 Bal.
Table 1  Chemical compositions of the alloys (mass fraction, %)
Fig.1  XRD spectra of as-cast GWZ641 (a),GWZ642 (b) and GWZ643 (c) alloys
Fig.2  Microstructures of the as-cast GWZ642 alloy: (a) OM, (b) SEM, (c) microanalysis of the block-shaped phases,(d) microanalysis of the lamella phases
Fig.3  TEM image of the Mg12Y1Zn1 phase (a) andcorresponding SAED(EB//[112?0]α) pattern in the as-cast GWZ641 alloy (b)
Fig.4  OM images of as-annealed GWZ641 (a), GWZ642 (b) and GWZ643 (c) alloys
Fig.5  TEM image of the lamella phase and corresponding SAED(EB//[112?0]α) pattern in the as-annealed GWZ641 alloy: (a) 14H-LPSO, (b) 18R-LPSO
Fig.6  OM (a) and SEM (b) images of the as-extruded GWZ642 alloy
Fig.7  OM image of the GWZ642 alloy after T4 treatment
Fig.8  Age-hardening response of the alloys GWZ641 (a),GWZ642 (b) and GWZ643 (c) during T6 treatment
Fig.9  Microstructures of the peak-aged extruded-T6 alloy: (a) OM image of GWZ641, (b) TEM image and corresponding SAED pattern of a-Mg matrix and β' phase in GWZ641, (c) OM image of GWZ642, and (d) TEM image of GWZ642
Fig.10  Microstructures of the peak-aged extruded-T5 alloy: (a) OM image of GWZ641, (b) TEM image and corresponding SAED pattern of a-Mg matrix and β' phase in GWZ641, (c) OM image of GWZ643, and (d) TEM image of GWZ643
State GWZ641 GWZ642 GWZ643
σb/MPa σ0.2/MPa δ/% σb/MPa σ0.2/MPa δ/% σb/MPa σ0.2/MPa δ/%
As-cast 136 120 2.2 152 121 2.30 146 122 2.60
Extruded 342 232 7.4 329 208 5.7 286 160 4.23
T4-peak-aged 330 218 18.6 276 162 14.2 251 150 12.1
T6-peak-aged 438 309 6.8 281 165 15.14 253 151 10.98
T5-peak-aged 397 260 4.6 339 201 10.43 302 196 5.89
Table 2  Mechanical properties of the alloys after different heat treatment
Fig.11  TEM micrographs of 18R-LPSO (a) and 14H-LPSO (b) structures in as-extruded GWZ641 alloy after tensile test
Fig.12  TEM micrograph of 14H-LPSO structure of the extruded GWZ641 alloy
[1] Kawamura Y, Hayashi K, Inoue A, et al.Rapidly solidified powder metallurgy Mg97Zn1Y2 alloys with excellent tensile yield strength above 600 MPa[J]. Mater. Trans., 2001, 42: 1171
[2] Han X Z, Xu W C, Shan D B.Effect of precipitates on microstructures and properties of forged Mg-10Gd-2Y-0.5Zn-0.3Zr alloy during ageing process[J]. J. Alloy. Compd., 2011, 509: 8625
[3] Zhu J, Chen J B, Liu T, et al.High strength Mg94Zn2.4Y3.6 alloy with long period stacking ordered structure prepared by near-rapid solidification technology[J]. Mater. Sci. Eng., 2017, 679A: 476
[4] Yamasaki M, Anan T, Yoshimoto S, et al.Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate[J]. Scr. Mater., 2005, 53: 799
[5] Liu H, Xue F, Bai J, et al.Effect of heat treatments on the microstructure and mechanical properties of an extruded Mg95.5Y3Zn1.5 alloy[J]. Mater. Sci. Eng., 2013, 585A: 261
[6] Lu F M, Ma A B, Jiang J H, et al.Effect of multi-pass equal channel angular pressing on microstructure and mechanical properties of Mg97.1Zn1Gd1.8Zr0.1 alloy[J]. Mater. Sci. Eng., 2014, 594A: 330
[7] Garcés G, Maeso M, Todd I, et al.Deformation behaviour in rapidly solidified Mg97Y2Zn (at.%) alloy[J]. J. Alloy. Compd., 2007, 432: L10
[8] Liu K, Rokhlin L L, Elkin F M, et al.Effect of ageing treatment on the microstructures and mechanical properties of the extruded Mg-7Y-4Gd-1.5Zn-0.4Zr alloy[J]. Mater. Sci. Eng., 2010, 527A: 828
[9] Yang Z, Li J P, Guo Y C, et al. Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6Zn-0.5Zr alloy [J]. Mater. Sci. Eng., 2007, 454-455A: 274
[10] Chino Y, Mabuchi M, Hagiwara S, et al.Novel equilibrium two phase Mg alloy with the long-period ordered structure[J]. Scr. Mater., 2004, 51: 711
[11] Zhu J, Chen X H, Wang L, et al.High strength Mg-Zn-Y alloys reinforced synergistically by Mg12ZnY phase and Mg3Zn3Y2 particle[J]. J. Alloy. Compd., 2017, 703: 508
[12] Matsuda M, Ii S, Kawamura Y, et al.Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy[J]. Mater. Sci. Eng., 2005, 393A: 269
[13] Kim J K, Sandl?bes S, Raabe D.On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures[J]. Acta Mater., 2015, 82: 414
[14] Chen R, Sandl?bes S, Zeng X Q, et al.Room temperature deformation of LPSO structures by non-basal slip[J]. Mater. Sci. Eng., 2017, 682A: 354
[15] Wen K, Liu K, Wang Z H, et al.Effect of pre-solution treatment on mechanical properties of as-extruded Mg96.9Zn0.43Gd2.48Zr0.15 alloy[J]. Mater. Sci. Eng., 2016, 674: 33
[16] Wu J, Shi Q, Ma H C, et al.Microstructure and mechanical behaviour of a Mg94Zn2Y4 alloy processed by equal channel angular pressing[J]. Mater. Sci. Eng., 2016, 669A: 417
[17] Hagihara K, Kinoshita A, Sugino Y, et al.Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy[J]. Acta Mater., 2010, 58: 6282
[18] Hagihara K, Yokotani N, Umakoshi Y.Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure[J]. Intermetallics, 2010, 18: 267
[19] Xu C, Zheng M Y, Xu S W, et al.Improving strength and ductility of Mg-Gd-Y-Zn-Zr alloy simultaneously via extrusion, hot rolling and ageing[J]. Mater. Sci. Eng., 2015, 643A: 137
[20] Liu H, Xue F, Bai J, et al.Microstructures and mechanical properties of Mg-(2, 3, 4)Y-1Zn alloys with long period stacking ordered structure[J]. Acta Metall. Sin., 2013, 49: 236刘欢, 薛烽, 白晶等. 含长周期结构Mg-(2, 3, 4)Y-1Zn合金的显微组织和力学性能[J]. 金属学报, 2013, 49: 236
[21] Itoi T, Seimiya T, Kawamura Y, et al.Long period stacking structures observed in Mg97Zn1Y2 alloy[J]. Scr. Mater., 2004, 51: 107
[22] Liu K, Zhang J H, Su G H, et al.Influence of Zn content on the microstructure and mechanical properties of extruded Mg-5Y-4Gd-0.4Zr alloy[J]. J. Alloy. Compd., 2009, 481: 811
[23] Chen B, Lin D L, Zeng X Q, et al.Microstructure and mechanical properties of ultrafine grained Mg97Y2Zn1 alloy processed by equal channel angular pressing[J]. J. Alloy. Compd., 2007, 440: 94
[24] Wang J F, Song P F, Zhou X E, et al.Influence of the morphology of long-period stacking ordered phase on the mechanical properties of as-extruded Mg-5Zn-5Y-0.6Zr magnesium alloy[J]. Mater. Sci. Eng., 2012, 556A: 68
[25] Zhang S, Liu W C, Gu X Y, et al.Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg-14Gd-3Y-1.8Zn-0.5Zr alloy[J]. J. Alloy. Compd., 2013, 557: 91
[26] Wang J F, Song P F, Huang S, et al.Effects of heat treatment on the morphology of long-period stacking ordered phase and the corresponding mechanical properties of Mg-9Gd-xEr-1.6Zn-0.6Zr magnesium alloys[J]. Mater. Sci. Eng., 2013, 563A: 36
[27] Shao X H, Yang Z Q, Ma X L.Strengthening and toughening mechanisms in Mg-Zn-Y alloy with a long period stacking ordered structure[J]. Acta Mater., 2010, 58: 4760
[28] Zhu Y M, Morton A J, Nie J F.The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys[J]. Acta Mater., 2010, 58: 2936
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!