Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (7): 518-524    DOI: 10.11901/1005.3093.2017.486
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Properties of Spherical Particles of Polymer Alloy Polypropylene/Polybutene-1
Hegang REN1(), Zhenyou LI2, Yibin YAN1, Sihan WANG1, Xiaopeng CUI3, Binyuan LIU3
1 Daqing Petrochemical Research Center, Petrochemical Research Institute of CNPC, Daqing 163714, China
2 Refining and Chemical Branch of CNPC, Beijing 100007, China
3 Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
Cite this article: 

Hegang REN, Zhenyou LI, Yibin YAN, Sihan WANG, Xiaopeng CUI, Binyuan LIU. Preparation and Properties of Spherical Particles of Polymer Alloy Polypropylene/Polybutene-1. Chinese Journal of Materials Research, 2018, 32(7): 518-524.

Download:  HTML  PDF(1925KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new type of polymer alloy of polypropylene/polybutene-1 was prepared by in-situ polymerization with spherical Ziegler-Natta as catalyst. The effect of butene-1 addition on the morphology, structure and the properties of polymer alloy was investigated. The polymers obtained were characterized by means of DSC, SEM XRD and 13C NMR. The results show that compared with the bulk polymerization of butene-1, the in-situ polymerization could improve the morphology of the product made from polybutene-1, and effectively reduce the adhesion between polymer particles. The catalytic activity, stacking density and particle size of the prepared polymer alloy are 10.4 kg/gCat, 0.44 g/cm3 and 500 μm, respectively. Moreover, the in-situ polymerization could effectively shorten the transition period of the polybutene-1 product from the unstable crystal form II to the stable crystalline form I. The mechanical property test revealed that with the rise of the content of the structural unit in propylene the tensile strength and flexural modulus of the polybutene alloys were increased, however, the density, impact strength and elongation at break were decreased.

Key words:  organic polymer materials      Ziegler-Natta catalyst      in-situ polymerization      reactor alloy     
Received:  15 August 2017     
ZTFLH:  TQ325  

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.486     OR     https://www.cjmr.org/EN/Y2018/V32/I7/518

Sample Butene-1/Catalyst
/g·g-1
Catalytic
efficiency
/kg·g-1 Cat
Bulk density·g·cm-3 Polymer fractions (mass fraction, %) Polymer morphology
Heptane
insoluble
fraction
Heptane
soluble
fraction
Diethyl ether
soluble
fraction
PPb - 4.6 0.43 98.5 1.5 - Spherical particles
PB1 6000 7.8 0.42 81.0 18.3 0.7 Loose spherical particles
PB2 8000 10.4 0.44 63.6 34.7 1.7 Loose spherical particles
PB3 10000 9.3 0.36 53.1 45.6 1.3 Loose spherical particles
PB4 12000 8.8 0.35 50.5 48.0 1.5 Partial caking
PB5 16000 8.0 - 40.8 57.5 1.7 Partial caking
PB6 20000 7.6 - 16.5 80.1 3.4 Partial caking
PB0a 12000 6.0 - 0 98.8 1.2 Bulk
Table 1  Summary of propylene and butene-1 sequential polymerization catalyzed by MgCl2-supported Ziegler-Natta catalyst
Fig.1  Typical DSC curves of polybutene-1 alloys
Sample PB phase PP phase
Tm/℃ Χc/%, mass fraction Tc/℃ Tm/℃ Χc/%, mass fraction Tc/℃
PB0 124.32 59.63 - - -
PB2 126.98 63.56 72.14 162.16 5.84 108.24
PP - - - 159.20 78.95 112.24
Table 2  Crystallization properties of the polybutene-1 alloys
Fig.2  13C NMR spectra of polybutene-1 alloy
Fig.3  XRD spectra of the polymers (a) PB0; (b) PB4
Fig.4  Dependence of form I and form II relatively content on the aging time at room temperature
Fig.5  SEM images of the catalyst and polymers (a) Ziegler-Natta catalyst; (b) PP particles; (c) PB-1 alloys
Fig.6  Proposed model of the particle growth of the PB-1alloy
Sample Tensile strength
/MPa
Elongation at break/% Impact strength /kJ·m-2 Flexural modulus
/MPa
Hardness
(Shore D)
Density
/g·cm-3
PB0 31.2±2.0 330±15 15.6±5.0 407±18 42.8 0.9365
PB6 33.5±1.8 210±19 65.1±2.5 489±20 58.5 0.9225
PB2 35.3±1.6 101±20 42.5±2.0 711±35 65.8 0.9071
PP 40.7±2.5 5±3 2.0±0.6 2014±74 72.9 0.9012
Table 3  The mechanical properties of polybutene-1 alloys
[1] Hua S S, Huang B C.Modification of small bulk polypropylene plant by 1-butene polymerization[J]. Sci. Technol. Innov. Herald, 2010, (24): 108(华树森, 黄宝琛. 小本体聚丙烯装置改造进行1-丁烯聚合[J]. 科技创新导报, 2010, (24): 108)
[2] Huang B C, Zhang B Y, Yao W, et al.Bulk depositing synthesis process of isotactic polybutylene-1 [P]. Chin Pat, CN101020728A, 2007(黄宝琛, 郑保永, 姚薇等.高全同聚丁烯-1的本体沉淀合成方法 [P]. 中国专利,CN101020728A, 2007)
[3] He A H, Wang C.Spherical polybutylene-1 with high isotacticity and preparation method thereof [P]. Chin Pat, CN103288993A, 2013(贺爱华, 王超. 高等规度球形聚丁烯-1及其制备方法 [P]. 中国专利, CN103288993A, 2013)
[4] He A H, Zheng W P, Shi Y W, et al.In situ synthesis of polybutene-1/polypropylene spherical alloys within a reactor with an MgCl2-supported Ziegler-Natta catalyst[J]. Polym. Int ., 2012, 61: 1575
[5] Jiang B Y, Shao H F, He A H, et al.Sequential two-stage polymerization for synthesis of isotactic polypropylene/isotactic polybutene-1 alloys: composition, morphology and granule growing mechanism[J]. Polym. Chem ., 2015, 6: 3315
[6] Zhang X M, Bi F Y, Song W B, et al.Preparation method for high isotactic polybutene-1 [P]. Chin Pat, CN103772557A, 2014(张晓萌, 毕福勇, 宋文波等. 高等规聚丁烯-1的制备方法 [P]. 中国专利, CN103772557A, 2014)
[7] Bi F Y, Song W B, Zhang X M, et al.Preparation of high isotactic polybutene-1[J]. Petrochem. Technol ., 2014, 43: 441(毕福勇, 宋文波, 张晓萌等. 高等规聚1-丁烯的制备[J]. 石油化工, 2014, 43: 441)
[8] Liu B Y, Ren H G, Yang M, et al.Spherical catalyst for 1-butene polymerization as well as preparation method and application thereof [P]. Chin Pat, CN101914172B, 2012(刘宾元, 任合刚, 杨敏等.1-丁烯聚合用的球形催化剂及其制备方法和应用 [P]. 中国专利, CN101914172B, 2012)
[9] Abedi S, Sharifi-Sanjani N.Preparation of high isotactic polybutene-1[J]. J. Appl. Polym. Sci ., 2000, 78: 2533
[10] Liu Y P, Cui K P, Tian N, et al.Stretch-induced crystal-crystal transition of polybutene-1: an in situ synchrotron radiation wide-angle X-ray scattering study[J]. Macromolecules, 2012, 45: 2764
[11] Resconi L, Camurati I, Malizia F.Metallocene catalysts for 1-butene polymerization[J]. Macromol. Chem. Phys ., 2006, 207: 2257
[12] Zhang C Y, Dong B, Zhang X Q, et al.Preparation and characterization of propylene/1-butene alloy with bulk copolymerization[J]. Chem. J. Chin. Univ ., 2014, 35: 2014(张春雨, 董博, 张学全等. 本体共聚合制备丙烯/1-丁烯合金及表征[J]. 高等学校化学学报, 2014, 35: 2014)
[13] Ma Y P, Li L G, Shao H F, et al.Microstructure and its effect on the properties of poly(1-butene) alloys within reactor[J]. Chem. World, 2016, (5): 261(马亚萍, 李兰阁, 邵华锋等. 聚1-丁烯釜内合金的微观结构及其对性能的影响[J]. 化学世界, 2016, (5): 261)
[14] Fisch M H, Dannenberg J J.Propylene incorporation in 1-butene copolymers by carbon-13 nuclear magnetic resonance spectrometry[J]. Anal. Chem ., 1977, 49: 1405
[15] Wang X F, Zhao Y X, Bi F Y, et al.The structure and properties of polybutene-1—(Ⅰ) the relation between isotacticity and properties of polybutene-1[J]. Polym. Mater. Sci. Eng ., 2008, 24(7): 66(王秀峰, 赵永仙, 毕福勇等. 全密度聚丁烯-1的结构与性能—(I)全同含量与聚丁烯-1性能的关系[J]. 高分子材料科学与工程, 2008, 24(7): 66)
[16] Stolte I, Androsch R, Di Lorenzo M L, et al. Effect of aging the glass of isotactic polybutene-1 on form II nucleation and cold crystallization[J]. J. Phys. Chem. B, 2013, 117: 15196
[17] Li L, Liu T, Zhao L, et al.CO2-induced crystal phase transition from form II to I in isotactic poly-1-butene[J]. Macromolecules, 2009, 42: 2286
[18] Cecchin G, Marchetti E, Baruzzi G.On the mechanism of polypropene growth over MgCl2/TiCl4 catalyst systems[J]. Macromol. Chem. Phys ., 2001, 202: 1987
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[7] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[10] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[11] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[12] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[13] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[14] ZHANG Cuige, HU Liang, LU Zuxin, ZHOU Jiahui. Preparation and Emulsification Properties of Self-assembled Colloidal Particles Based on Alginic Acid[J]. 材料研究学报, 2021, 35(10): 761-768.
[15] HUANG Jian, LIN Chunxiang, CHEN Ruiying, XIONG Wanyong, WEN Xiaole, LUO Xin. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. 材料研究学报, 2020, 34(9): 674-682.
No Suggested Reading articles found!