Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (2): 136-141    DOI: 10.11901/1005.3093.2017.297
ARTICLES Current Issue | Archive | Adv Search |
Toughening Modification of Acrylonitrile-butadiene Rubber/Ceric Sulfate Composites Crosslinked by Coordinate Bonds
Qian ZHUO1,2, Wenqing YANG1,2, Changlin CAO1,2, Rongguo CHEN1,2, Qingrong QIAN1,2, Qinghua CHEN1,2()
1 Institute of Minnan Science and Technology, College of Environmental Science and Engineering, Fujian Normal University, Quanzhou 362332, China
2 Quangang Petrochemical Research Institute of Fujian Normal University, Quanzhou 362801, China
Cite this article: 

Qian ZHUO, Wenqing YANG, Changlin CAO, Rongguo CHEN, Qingrong QIAN, Qinghua CHEN. Toughening Modification of Acrylonitrile-butadiene Rubber/Ceric Sulfate Composites Crosslinked by Coordinate Bonds. Chinese Journal of Materials Research, 2018, 32(2): 136-141.

Download:  HTML  PDF(1959KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The acrylonitrile-butadiene rubber/ ceric sulfate (NBR/Ce(SO4)2·4H2O) composites materials were toughened with poly(propy1ene carbonate) (PPC). And the structure and properties of NBR/PPC/Ce(SO4)2·4H2O composites materials were investigated by differential scanning calorimetry, thermogravimetric analysis, equilibrium swelling method, scanning electron microscopy, curing performance test and mechanical property. The results show that Ce(SO4)2·4H2O mainly serves as coordination crosslinking agent, compatibilizer and reinforcing filler, while PPC mainly plays the role of toughening agent.

Key words:  composite      coordination crosslinking      toughening modification      NBR      PPC      cerium sulfate     
Received:  04 May 2017     
ZTFLH:  TQ330  
Fund: Supported by the Special Foundation for State Major Basic Research Program of China (No. 2016YFB0302302), the Special Foundation for Quangang Petrochemical Research Institute of Fujian Normal University of China (No. 2015YJY04)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.297     OR     https://www.cjmr.org/EN/Y2018/V32/I2/136

Fig.1  Rheometric curves at 160℃ of NBR/PPC/Ce(SO4)24H2O blends (a) Torque curves, (b) Tan curves
Fig.2  Strain sweep curves for NBR/PPC/Ce(SO4)24H2O blends at 160℃
Fig.3  Relationship obtained at 160℃ between storage modulus (G') and frequency (ω) (a), loss modulus (G'') and ω (b) for NBR/PPC/Ce(SO4)24H2O blends
Fig.4  Temperature dependence of storage modulus (a) and tanδ (b) for NBR/PPC/Ce(SO4)24H2O
Fig.5  DSC curves of crosslinked NBR/PPC/Ce(SO4)24H2O blends a-NBR; b-NBR/Ce (SO4)24H2O; c-NBR/PPC; d-NBR/PPC/Ce(SO4)24H2O; e-PPC
Fig.6  Swelling index of coordinated NBR/PPC/Ce(SO4)2-4H2O
Fig.7  TG and DTG curves of coordinated NBR/PPC/Ce(SO4)24H2O blends a-100/0/10; b-90/10/10; c-70/30/10; d-0/100/10
Fig.8  Max of asymmetry of NBR/PPC/Ce(SO4)24H2O when curing at 160℃
Fig.9  The SEM micrographs of coordinated NBR/PPC/Ce(SO4)24H2O with different PPC content (a) 0 g PPC; (b) 10 g PPC; (c) 20 g PPC
NBR/PPC/Ce(SO4)24H2O(g) 100/0/10 90/10/10 80/20/10 70/30/10 60/40/10 0/100/10 70/30/0
Tensile strength /MPa 4.3 4.2 4.0 4.0 3.0 5.0 0.9
Breaking elongation rate/% 878 876 864 1209 1364 1052 256
Hardness (shore A) 54 50 53 54 54 94 50
Crosslinking density/molcm-3 15.96 6.68 4.26 2.78 1.41 - -
Table 1  Physical properties of vulcanizated NBR/PPC/Ce (SO4)24H2O blends
[1] Yuan X F, Wu G Z, Wu C F.Effect of copper sulfate content on coordination crosslinking reaction between copper sulfate and acrylonitrile-butadiene rubber[J]. Acta Polym. Sin., 2007, (3): 272(袁晓芳, 吴国章, 吴驰飞. 硫酸铜含量对硫酸铜与丁腈橡胶之间配位交联反应的影响[J]. 高分子学报, 2007, (3): 272
[2] Zhuo Q, Chen R G, Xiao L R, et al.Advances in coordination-crosslinking rubber—an environmentally friendly rubber[J]. Mater. Rev., 2011, 25(7): 140(卓倩, 陈荣国, 肖荔人等. 一种环境友好橡胶——配位交联橡胶的研究进展[J]. 材料导报, 2011, 25(7): 140)
[3] Mandal U K.Ionic elastomer based on carboxylated nitrile rubber: infrared spectral analysis[J]. Polym. Int., 2000, 49: 1653
[4] Chino K, Ashiura M.Themoreversible cross-Linking rubber using supramolecular hydrogen-bonding networks[J]. Macromolecules, 2001, 34: 9201
[5] Antony P, Bandyopadhyay S, De S K.Thermoplastic elastomers based on ionomeric polyblends of zinc salts of poly(propylene-co-acrylic acid) and carboxylated nitrile rubber[J]. J. Mater. Sci., 1999, 34: 2553
[6] Grigoryeva O, Fainleib A, Starostenko O.Thermoplastic elastomers from rubber and recycled polyethylene: chemical reactions at interphases for property enhancement[J]. Polym. Int., 2004, 53: 1693
[7] Li H, Shen F, Wu C F.Preparation and characterization of novel NBR/PVC alloy crosslinked by coordinate bonds[J]. Chem. J. Chin. Univ., 2005, 26: 370(李慧, 沈飞, 吴驰飞. 配位交联的NBR/PVC合金的制备及表征[J]. 高等学校化学学报, 2005, 26: 370)
[8] Shen F, Yuan X F, Wu C F.Investigation on crosslinking behaviors of NBR/PVC filled with anhydrous copper sulfate particles by dynamic mechanical analysis[J]. J. Polym. Sci. Polym. Phys., 2007, 45B: 41
[9] Li N Z, Ren W T, Zhang Y, et al.Study on the coordination effect of SnCl2·2H2O/HNBR[J]. Spec. Purpose Rubber Prod., 2007, 28(1): 14(李宁子, 任文坛, 张勇等. 氯化亚锡对氢化丁腈橡胶配位交联作用的研究[J]. 特种橡胶制品, 2007, 28(1): 14)
[10] Yuan X F, Wu G Z, Wu C F.Effect of crystal water on coordination crosslinking reaction between copper sulfate and acrylonitrile-butadiene rubber[J]. Chem. J. Chin. Univ., 2006, 27: 1978(袁晓芳, 吴国章, 吴驰飞. 结晶水对硫酸铜与丁腈橡胶之间配位交联反应的影响[J]. 高等学校化学学报, 2006, 27: 1978)
[11] Mou H Y, Shen F, Cao Y Y, et al.Study on the non-liquid-phase coordination crosslinking reaction of acrylonitrile-butadiene rubber/copper sulfate composites[J]. Acta Polym. Sin., 2008,(9): 910, 2008, (9): 910)
[12] Dong Q Q, Zheng Q, Du M.Dynamic rheological behavior of particles-filled HDPE composite systems[J]. Chem. J. Chin. Univ., 2005, 26: 1761(董琦琼, 郑强, 杜淼. 粒子填充HDPE复合体系动态流变行为研究[J]. 高等学校化学学报, 2005, 26: 1761)
[13] Dong H M, Yi X S, An X F, et al.Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Mater. Compos. Sin., 2014, 31: 273(董慧民, 益小苏, 安学锋等. 纤维增强热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31: 273)
[14] Zhang P, Liu G, Hu X L, et al.Properties of toughened RTM composites by structural toughening layer[J]. Acta Mater. Compos. Sin., 2012, 29(4): 1(张朋, 刘刚, 胡晓兰等. 结构化增韧层增韧RTM复合材料性能[J]. 复合材料学报, 2012, 29(4): 1)
[15] Huang Y H, Yang X H, Zhao S L, et al.Studies on the blends of carbon dioxide copolymer. III. NBR/PPC systems[J]. J. Appl. Polym. Sci., 1996, 61: 1479
[16] Wang S J, Huang Y H, Cong G M.Study on nitrile-butadiene rubber/poly (propylene carbonate) elastomer as coupling agent of poly (vinyl chloride)/poly (propylene carbonate) blends. I. Effect on mechanical properties of blends[J]. J. Appl. Polym. Sci., 1997, 63: 1107
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!