Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (2): 81-89    DOI: 10.11901/1005.3093.2017.215
ARTICLES Current Issue | Archive | Adv Search |
Effect of Intermediate Cu-layer on Mechanical Properties of Welded Joints of TA1/X65 Composite Plate
Min ZHANG(), Xiaowei WANG, Ting HAN, Tao ZHANG, Erlong MU
College of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Cite this article: 

Min ZHANG, Xiaowei WANG, Ting HAN, Tao ZHANG, Erlong MU. Effect of Intermediate Cu-layer on Mechanical Properties of Welded Joints of TA1/X65 Composite Plate. Chinese Journal of Materials Research, 2018, 32(2): 81-89.

Download:  HTML  PDF(9669KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two explosively formed composite plates TA1/X65 and TA1/Cu/X65 were welded with flux cored wire of Cu-Ag-Mo-Nb. Then the effect of the intermediate Cu-layer on the microstructure, element distribution, and mechanical property of the butt welding joints are investigated by means of SEM, EDS and mechanical tester. The results show that the two types plates could be well connected by butt welding, and there exist obvious gray transition zones at the interfaces of titanium, steel and the formed transition layer, but no pores, inclusions, cracks and other defects in the weld joints were observed. According to the analysis of SEM, EDS and XRD, the TiFe-phase in the triangle area of the plate TA1/X65 is inevitable. The Cu-layer within of the plate TA1/Cu/X65 can effectively prevent the mutual diffusion of Ti and Fe, thus the diffusion of Ti and Fe onto the transition zone decreased significantly, as a result, the Fe-content in the weld titanium and the Ti-content in the weld steel has also been significantly reduced. Therefore, the weld composite plate TA1/Cu/X65 exhibits better mechanical properties rather than the plate TA1/X65 without Cu-layer in terms of tensile strength, bending modulus and impact strength.

Key words:  composite      flux cored wire      microstructure      three-layer composite plate      distribution of element      mechanical property     
Received:  29 March 2017     
ZTFLH:  TG422  
Fund: Supported by National Natural Science Foundation of China (No. 51274162), Department of Education to Serve Local Special Program of Shaanxi Province (No. 16JF021), and Key Laboratory Research Program of Shaanxi Provincial Department of Education (No. 15JS082)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.215     OR     https://www.cjmr.org/EN/Y2018/V32/I2/81

Fig.1  The schematic of the two-layer plate groove
Fig.2  The schematic of the three-layer plate groove
Zone Arc voltage/V Welding current/A Welding wire diameter/mm Argon flow rates/Lmin-1
TIG Back protection
Titanium layer 12~14 80~100 1.2 12~15 20
Transition layer 14~15 100~120
Steel layer 15~17 160~180
Table 1  welding process parameters
Fig.3  Morphology of the Cu-Ag-Mo-Nb flux-cored wire welded joint (a) welding macroscopic of two-layer plate, (b) morphology of bonding interface of transition layer and titanium layer, (c) morphology of three-phase mixed zone on the right side of welded joint
Fig.4  XRD pattern of the cross-section of the Cu-Ag-Mo-Nb flux-cored wire welded joint
Zone Position Ti Cu Fe Ag Nb Mo Potential phase
A 58.32 36.32 - 5.12 0.24 - TiCu+Ti2Cu
B 49.79 46.02 - 4.03 - 0.16 TiCu+β-Ti(s,s)
C 9.68 89.67 - 0.64 Cu+TiCu
D 68.84 9.87 13.43 7.85 (β-Ti, Ag)+TiFe+TiCu
E 58.09 15.05 15.74 0.79 10.32 (β-Ti,Nb)+τ2
F 66.58 5.47 18.59 0.34 9.02 (β-Ti, Mo)+TiFe
Table 2  EDS result of welding (atomic fraction, %)
Fig.5  Welding joint scan of three-layer plate (a) welding macroscopic of three-layer plate, (b) morphology of four-phase mixed zone on the right side of welded joint, (c) morphology of bonding interface of transition layer and steel layer, (d) morphology of bonding interface of transition layer and titanium layer
Fig.6  XRD pattern on the surface in the weld
Zone Position Ti Fe Cu Mo Nb Ag Potential phase
A - 23.52 74.41 - - 2.07 Cu(s, s)+α-Fe(s, s)
B 67.65 - 28.15 3.35 - 0.86 β-Ti(s, s)+TiCu
C - 85.95 11.96 0.63 1.46 - α-Fe(s, ,s)+Cu(s, s)
D 84.36 - 2.09 6.06 4.12 3.38 β-Ti(s, s)
E 69.51 - 21.66 5.12 3.28 1.43 Ti2Cu+β-Ti(s, s)
F 51.90 - 47.12 - - 0.98 Ti2Cu+Ti2Cu3
Table 3  Chemical composition of the various phases in the weld (atomic fraction, %)
Test
number
Tensile strength
/MPa
Yield strength
/MPa
Break extensibility/%
Two-layer 505 405 12.8
Three-layer 525 430 13.1
Table 4  Tensile test results of butt joint of composite plate
Fig7  Bend test results
Fig.8  Impact test results
Fig.9  Macro morphology of bending specimens (a) face bending of two-layer; (d) back bending of three-layer; (b) back bending of two-layer; (c) face bending of three-layer
Fig.10  Fracture morphology of tensile specimen (a) titanium weld of two-layer; (b) transition layer of two-layer; (c) titanium weld of three-layer; (d) transition layer of three-layer
Fig.11  Fracture morphology of impact specimen (a) transition layer of two-layer; (b) titanium weld of two-layer; (c) transition layer of three-layer; (d) titanium weld of three-layer
[1] Zhang B G,Wang T, Chen G Q et al. Fine microstructure and its effect on hardness of electron beam welding joint of TC21 Ti alloy[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(S1): 829(张秉刚, 王廷, 陈国庆等. TC21钛合金电子束焊缝精细组织及其对硬度的影响[J]. 中国有色金属学报, 2010, 20(增刊1): 829)
[2] Wang T, Zhang B G, Feng J C.Influences of different filler metals on electron beam welding of titanium alloy to stainless steel[J]. Trans. Nonferr. Met. Soc. China, 2014, 24: 108
[3] Zhang B G, Wang T, Duan X H, et al.Temperature and stress fields in electron beam welded Ti-15-3 alloy to 304 stainless steel joint with copper interlayer sheet[J]. Trans. Nonferr. Met. Soc. China, 2012, 22: 398
[4] Zhang B G,Wang T,Chen G Q, et al.Microstructure and mechanical of property of electron beam self-melting brazing joint of titanium alloy to chromium bronze[J]. Rare Metal Materials and Engineering,2012,41(01):129(张秉刚, 王廷, 陈国庆等. 钛合金与铬青铜电子束自熔钎焊接头组织与力学性能[J]. 稀有金属材料与工程, 2012, 41: 129)
[5] Wang T, Zhang B G, Feng J C, et al.Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium-stainless steel joint[J]. Mater. Charact., 2012, 73: 104
[6] Wang T, Zhang B G, Feng J C.Influences of different filler metals on electron beam welding of titanium alloy to stainless steel[J]. Trans. Nonferr. Met. Soc. China, 2014, 24: 108
[7] Feng J C, Wang T, Zhang B G, et al.Research status analysis of electron beam welding for joining of dissimilar materials[J]. Transaction of the China Welding Institution,2009, 30(10): 108(冯吉才, 王廷, 张秉刚等. 异种材料真空电子束焊接研究现状分析[J]. 焊接学报, 2009, 30(10): 108)
[8] Zhang B G, Wang T, Chen G Q, et al.Electron beam welding of TC21 titanium alloy with large thickness[J]. Transaction of the China Welding Institution, 2009, 30(11): 5(张秉刚, 王廷, 陈国庆等. 大厚度TC21钛合金电子束焊接试验[J]. 焊接学报, 2009, 30(11): 5)
[9] Song A P.Welding technology of titanium steel composite plate[J]. Steel Construction,2012, 27(7): 55(宋爱平. 钛钢复合板焊接技术 [J]. 钢结构, 2012, 27(7): 55)
[10] Akbari Mousavi S A A, Farhadi Sartangi P. Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium-stainless steel composite[J]. Mater. Sci. Eng., 2008, 494A: 329
[11] Elrefaey A, Tillmann W.Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer[J]. J. Mater. Process. Technol., 2009, 209: 2746
[12] Ghosh M, Chatterjee S.Characterization of transition joints of commercially pure titanium to 304 stainless steel[J]. Mater. Charact., 2002, 48: 393
[13] Dou S Y,Hu Q N.Welding of large-scale titanium steel composite plate vessel[J]. Welding Technology, 2008, 37(1): 27(窦双云, 胡强年. 大型钛-钢复合板容器的焊接[J]. 焊接技术, 2008, 37(1): 27)
[14] Ghosh M, Chatterjee S.Effect of interface microstructure on the bond strength of the diffusion welded joints between titanium and stainless steel[J]. Mater. Charact., 2005, 54: 327
[15] Chu Q L, Zhang M, Li J H, et al.Intermetallics in CP-Ti/X65 bimetallic sheets filled with Cu-based flux-cored wires[J]. Mater. Des., 2016, 90: 299
[16] Chu Q L, Zhang M, Li J H, et al.Joining of CP-Ti/Q345 sheets by Cu-based filler metal and effect on interface[J]. J. Mater. Process. Technol., 2015, 225: 67
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[8] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[9] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[15] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
No Suggested Reading articles found!